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Featured Application: Physics-informed quality assessment of a stringed musical instrument.

Abstract: Comparing violins requires competence and involves both subjective and objective evalua-
tions. In this manuscript, vibration tests were performed on a set of 25 violins, both historical and
new. The resulting bridge admittances were modeled in the low and mid-frequency ranges through
a set of objective features. Once projected into the new representation, the bridge admittances of
three historical violins made by Stradivari and a famous reproduction revealed high similarity. PCA
highlighted the importance of signature mode frequencies, bridge hill behavior, and signature mode
amplitudes in distinguishing different violins.
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1. Introduction

Assessing the quality of a violin is an extremely difficult matter. There are no objective
descriptors that can separate a “good” violin from a “great” one and yet some instruments
can reach prices up in the millions. Even professional musicians have trouble distinguishing
old from new violins, and their preference does not necessarily correlate with the price of
the instrument [1–3]. At the end of the day, it comes down to the subjective preference of
the player. Having an objective measure to support the evaluation of an instrument could
help instrument makers and musicians in the search for the perfect match between violinist
and violin.

The bridge admittance could be such a simple objective tool to qualify an instrument.
This is the frequency response function (FRF) measured at the bridge on the plane per-
pendicular to the strings. The measurement is performed by means of an instrumented
hammer and an accelerometer, located at opposites on the bridge. It is a good estimator of
the vibrational behavior of the instrument soundbox from whence the sound of the violin
comes from. It is fast to perform and the equipment needed is relatively cheap, at least for
a scientific lab if not for the luthier’s workshop [4,5].

FRFs have in fact been used for a long time as descriptors of the violin in the liter-
ature [6,7]. It has even been stated, without hard evidence though, that the quality of
the violin correlates with some spectral features of the bridge admittance. In particular,
the presence of the so-called bridge hill has been hailed as a mark of quality. According
to [7], this bridge hill is “a hump [sic] between 2 and 3 kHz in their frequency responses”.
Despite the importance of this feature, the lack of a scientifically grounded definition makes
its use in research questionable.

Our objective in this article is to produce physically informed and objectively measur-
able features from the bridge admittance that allow one to compare, and maybe eventually
discriminate, good violins from great ones. At the very least, have a standard way of
comparing them beyond the mere visual inspection, which seems to be the preferred way
in the state of the art [5].
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To compare different FRFs one needs to understand their physical provenance. Wood-
house [8] divides the signal into three separate regions. In the low range, the influence of
the individual modes of the instrument is clearly visible in the signal as peaks. Eventually,
as the frequency of the modes becomes higher, the damping factor makes the peaks blend
together and a clear identification of the modes is not possible: these are the transitional
modes. At high frequency, in fact, the mode overlap becomes greater, and even small
differences cause a great variability of the mode shapes between instruments. Although the
modes still determine the behavior of the FRF, analytical approaches to model it becomes
progressively less effective [9].

Different instruments have different resonance frequencies. These differences are
due to material and geometric variation between the instruments [10]. Therefore, a direct
comparison in the frequency domain is not immediately applicable. If two instruments
have the same FRFs but shifted in a few Hertz, does that make them more similar than a
pair of FRFs where the modes are at the same frequency but their amplitude is completely
different? Developing a way to answer those kinds of questions is the aim of this article.

Following the separation highlighted by Woodhouse, one can consider different mod-
els for each frequency range of the FRF. Modal approaches are revealed as powerful
reconstructions of the individual (also denoted as “signature”) and transitional modes.
Indeed, the bridge can be interpreted as a filter coupling strings and violin soundbox such
that its admittance can be seen as the filter transfer function [11]. Accordingly, the funda-
mental properties of modes, i.e., frequency, amplitude, and damping ratio, can be used
to define the poles and zeros of such filter. From the signal processing perspective, this
methodology can be applied not only in the analysis stage [12] but also in the synthesis of
virtual or altered instrument timbre starting from measured admittances [13–15].

Although they can fit a large portion inside acoustic instrument admittances, these
models are not able to interpret relevant high-frequency components. At the same time, they
could need a large number of modes to reach good accuracy [13]. The same considerations
hold for Euclidean distances computed even on a small set of signature mode features.
These showed to better quantify the similarity between FRFs if compared to point measures,
e.g., mean square error (MSE), which are evaluated in the frequency domain directly [16].
However, the same metric fails when differences occur mainly at high frequency.

In this work, we propose an extension of the multidimensional feature space proposed
in [16] based on both modal parameters and energy-based descriptors, found to be more
representative for the mid-range [9]. In this new representation, a more informative
Euclidean distance can be measured to assess the similarity between FRFs in the low and
mid-frequency ranges. The features adopted here are objectively defined, in contrast to
e.g., the bridge hill, and could be used to study the perceptual relevance of particular
elements of the FRF through virtual sound synthesis.

2. Materials and Methods
2.1. Violins

The selection of violins under study counts twenty-five instruments with varying ages
and styles of making. Thirteen of these belong to the permanent collection of instruments
awarded in the “Antonio Stradivari International Triennial Competitions of Stringed instru-
ment making” [17]. The competition, held in the city of Cremona since 1976, embraces both
Cremonese and international competitors. A jury of experts selects the winner according to
stylistic and technical evaluations. The winner of each contest is acquired by the museum
and kept in its permanent collection. Among the remaining samples, there are nine modern
violins that were kindly offered by violin makers during the Mondo Musica 2020 exposition
and three historical violins made by Stradivari in the 18th century. For all the instruments,
the owners provided consent for the usage of the results in an anonymous fashion. For this
reason, and for the ease of reading, we will denote all the violins made within the 20th
and 21st centuries with M1–M22 (modern) while we will refer to the historical ones as
H1–H3. It is noteworthy that one of the modern violins (i.e., M22) was made by a famous
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international violin maker with the aim of reproducing the outline of one of the measured
historical violins (i.e., H3). The acoustic similarity of the violins was confirmed by the actual
owner of both instruments, who happens to be an internationally acclaimed violin player.
Although dissimilarities between violins rely often on subtle details and even two replicas
of the same violin could easily differ in their sound [3], the presence of the pair M22–H3 in
addition to a group of violins belonging to the same author, i.e., to Stradivari, still could be
used to assess the soundness of the proposed metric. Indeed, common trends are expected
to be observed once the bridge admittances are projected into the feature representation.

2.2. Vibration Tests

The bridge admittances were measured by means of hammer impact testing. A struc-
ture made of wood and rubber bands was built to approximate free boundary conditions
during the test. Four rubber bands were used for the suspension of the instrument, letting
the sample hang in a vertical position and minimizing the contact surface [18,19]. In partic-
ular, two rubber bands were placed at the bottom of the violin while the remaining two
supported its soundbox from the upper corners. In this configuration, the resting position
of the hammer is vertical after the hit, avoiding the occurrence of accidental secondary
strikes during the acquisition. A dynamometric hammer with light tip (086E80, by PCB
Piezotronics) and a uniaxial accelerometer (352A12, by PCB Piezotronics) were used to
generate an impulsive excitation and measure the harmonic response, respectively. Impacts
were applied on one edge of the bridge while the accelerometer was placed on the opposite
side. For each measurement, six time-domain signals of two seconds sampled at 48 kHz
were acquired. FRFs were then estimated following the definition of the H1 estimator to
reduce noise caused by the instrumentation [20]. The magnitudes of the resulting FRFs are
represented in dB scale, with a reference value equal to 1 m s−1 N−1.

2.3. Low-Frequency Features

The signature modes of a violin typically cover the violin response in the low-frequency
range, which can reach 800 Hz for the complete soundbox [21]. Thanks to the low modal
density encountered in this region, analytical approximations based on modal superposition
can be used [22]. Therefore, let us model a given bridge admittance Hij(ω) as a linear
combination of modal contributions, namely

Hij(ω) ∼
N

∑
r=1

ΦriΦrj

ω2
r + 2jωξrωr −ω2 , ω ∈ [ωmin, ωmid], (1)

where i and j refer to the excitation and measurement points at the bridge corners, N is the
number of signature modes considered, Φri and Φrj correspond to the mode shape of mode
r evaluated at the two points observed, ωr is the natural frequency and ξr is the damping
ratio associated to mode r, respectively.

The model was defined using as features the frequency fr = ωr/2π, amplitude
pr = |Hij(ωr)| and Q factor qr = 1/2ξr of N = 4 signature modes among the ones presented
in the literature [21], namely: (i) the Helmholtz mode A0 (features f1, p1, q1); (ii) the C Bouts
Rhomboidal mode CBR ( f2, p2, q2); (iii) the Corpus mode B1− ( f3, p3, q3); (iv) the Body
mode B1+ ( f4, p4, q4). The choice was made on the basis of two main considerations. On
the one hand, the selected modes proved to be consistent over frequency throughout the
set of bridge admittances analyzed while mode switching occurred frequently for the
excluded ones. As an example, the second air mode A1 was found either between CBR
and B1− or between B1− and B1+, making its identification impossible for a simple peak
finding algorithm. On the other hand, these modes are also well-known by the violin maker
community [8,23].

The frequency range in which the reconstruction shows a good agreement with the
measurement has ωmin = 2π fmin with fmin = 230 Hz as lower limit to exclude irrelevant
information before the A0 mode and, as upper limit, ωmid = 2π fmid with fmid equal to the
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frequency of the first antiresonance (i.e., minimum in the FRF magnitude) after the B1+
mode. This antiresonance was taken as a reference since it was found in all the FRFs under
study. It is worth noticing that when ω matches ωr,

|Hij(ωr)| ∼
ΦriΦrj

2ξrω2
r

, (2)

thus making Equation (1) completely recovered from the knowledge of the mode frequen-
cies, amplitudes and corresponding damping ratios.

Finally, a total of twelve low-frequency descriptors are included in the definition of
the feature space. We will denote the features related to signature mode frequencies as the
vector f = [ f1, f2, f3, f4], the features related to signature mode amplitudes as the vector
p = [p1, p2, p3, p4] and the features related to damping as the vector of corresponding Q
factors q = [q1, q2, q3, q4]. If f is extracted directly from the measured signal by means
of available peak finding algorithms, p and q must be tuned such that the model takes
into account the correlation between modes, even though this was found to be low. The
estimates for these two subsets of features are thus obtained rewriting Equation (1) as a
function of p and q and setting up a least-square measurement fitting problem as

min
p,q∈R+

∣∣∣∣∣∣∣∣ |Hij(ω)| −
∣∣∣∣ 4

∑
r=1

ω2
r pr

qr(ω2
r −ω2) + jωωr

∣∣∣∣ ∣∣∣∣∣∣∣∣2
2
, (3)

with ω ∈ [ωmin, ωmid] and ωr = 2π fr. The minimization was solved iteratively using the
simplex algorithm. The peak amplitudes extracted from the signal were provided as initial
values for p while a guess for q was computed by means of the half-power bandwidth
method [24].

2.4. Mid-Frequency Features

To define a set of features modeling the FRF at higher frequencies, we took inspiration
from statistical approaches to the subject [9]. We chose to represent the energy distribution
of a given bridge admittance Hij(ω) by computing its relative power (RP) as

RP(ω) =
P(ω)

Ptot
=

∫ ω
ωmin
|Hij(ω)|2 dω∫ ωmax

ωmin
|Hij(ω)|2 dω

, (4)

where P(ω) is the cumulative power and Ptot is the total power of the signal, i.e., computed
within the range [2π fmin, 2π fmax] with fmin = 230 Hz and fmax = 4500 Hz. In the frequency
interval considered, RP(ω) ranges between 0 and 1.

The slope of this descriptor is characterized by “bumps” where the corresponding
bridge admittance exhibits high-energy components (see Figure 1b as an example). In
particular, two main slope changes typically occur in violin bridge admittances after
500–600 Hz and between 2 and 3 kHz. The first relevant increase in the RP value, encoun-
tered at low frequencies, quantifies the amount of energy of the signature modes. Indeed,
the RP curve starts to flatten at the frequency of mode B1+. Starting from the antiresonance
after mode B1+, the RP shows a different growth rate for each violin in the dataset. Here,
the RP curve exhibits a characteristic S-shape strongly correlated to a high-energy region in
the corresponding bridge admittance.

To obtain a compact description of this behavior in the mid-frequency range, being
it the interval between ωmid and ωmax, we modelled the RP curve by means of a sigmoid
function with tunable curvature based on [25], namely

σ(ω, ω∗, k∗) =
ω̃− k∗ω̃

k∗ − 2k∗|ω̃|+ 1
where ω̃ =

ω−ω∗

∆ω
, (5)
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ω∗ is the center frequency of the sigmoid, k∗ the control parameter for its curvature and
∆ω = min(|ω∗ − ωmid|, |ωmax − ω∗|) such that the domain of the sigmoid is symmetric
with respect to ω∗. To better fit the RP values at the extremes of the mid-frequency range,
the output of the function σ(ω, ω∗, k∗) is scaled and shifted leading to

σ′(ω, ωmid, ω∗, k∗) = σ(ω, ω∗, k∗)
RP(ω∗ + ∆ω)− RPmid

σ̄max − σ̄min
+ |RPmid − σ̄min|,

RPmid = RP(ωmid),

σ̄max = max(σ(ω, ωmid, ω∗, k∗)),

σ̄min = min(σ(ω, ωmid, ω∗, k∗)).

(6)

The fitting was performed by searching for the values of ω∗, k∗ such that the MSE
between the measured RP and the predicted sigmoid has its minimum. The minimization
was carried out iteratively using the simplex algorithm. Interestingly enough, the values
found for k∗ at the end of the optimization follow a Gaussian distribution centered around
−0.7. Two outliers were detected, with k∗ equal to −0.25 and −0.05.

The advantage of this representation is that the resulting optimal sigmoid model can
be easily projected back to the frequency-magnitude space by computing its derivative
with respect to ω. We thus decided to use the parameters of Equation (6) as features for the
mid-frequency range.

Along with these features, we added two additional descriptors to the set. On the
one hand, we took the MSE between the measured RP and the sigmoid fit as a metric
of the fitting accuracy. We will denote it as the “area difference” ∆A for its geometric
interpretation (see Figure 1b). On the other hand, we considered the slope khigh of the
linear fit in the range [4000, 4500] Hz since the sigmoid model fails at explaining the linear
decrease in the magnitude encountered in FRFs at very high frequency. Table 1 summarizes
the final set of low and mid-frequency features defined to reconstruct a bridge admittance.

Table 1. Summary of the low and mid-frequency features defined.

Name Description

Signature mode frequencies

f1 Frequency of the first signature mode (Helmoltz mode, A0)

f2 Frequency of the second signature mode (C Bouts Rhomboidal mode, CBR)

f3 Frequency of the third signature mode (Corpus mode, B1−)

f4 Frequency of the fourth signature mode (Body mode, B1+)

Signature mode amplitudes

p1 Amplitude of the first signature mode (Helmoltz mode, A0)

p2 Amplitude of the second signature mode (C Bouts Rhomboidal mode, CBR)

p3 Amplitude of the third signature mode (Corpus mode, B1−)

p4 Amplitude of the fourth signature mode (Body mode, B1+)

Signature mode damping

q1 Q Factor of the first signature mode (Helmoltz mode, A0)

q2 Q Factor of the second signature mode (C Bouts Rhomboidal mode, CBR)

q3 Q Factor of the third signature mode (Corpus mode, B1−)

q4 Q Factor of the fourth signature mode (Body mode, B1+)
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Table 1. Cont.

Name Description

Mid-frequency

ωmid Frequency of the first antiresonance after mode B1+

RPmid Relative power of the signature modes, RPmid = RP(ωmid)

ω∗ Sigmoid center frequency

RP∗ Relative power center value, RP∗ = RP(ω∗)

k∗ Relative power curvature

∆A Area difference, ∆A = MSE(RP(ω), σ′(ω, ωmid, ω∗, k∗))

khigh Slope of the linear fit at high frequency

Figure 1. (a) Relative power for all the admittances in the dataset (solid light blue lines). In dashed
lines are the same quantity obtained for two “outliers”: a cheap industrial violin made of plywood
(dash-dotted dark red line), and a violin made of marble as part of an art project (dotted violet line).
The solid dark green line corresponds to the mean over all the RP curves. (b) The relative power of
violin M1 (solid blue line) and corresponding sigmoid fit (dashed red line). The accuracy of the fitting
is assessed by looking at the area difference (colored in green). (c) Accuracy of the sigmoid fitting
in terms of area difference. Violins are sorted for increasing values of ∆A. Anecdotally, the three
Stradivari violins and the copy of one of them are the ones with the smallest error while M1 (labeled
in red) is one of the worst fits.
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2.5. Feature-Based Reconstruction

Given the models for the different components of the bridge admittance in
Equations (1) and (6), its magnitude can be reconstructed starting from the corresponding
values of low and mid-frequency features as

∣∣Hij(ω)
∣∣ ∼ ∣∣∣∣∣ 4

∑
r=1

ΦriΦrj

ω2
r + 2jωξrωr −ω2

∣∣∣∣∣+ C
δσ′(ω, ωmid,ω∗, k∗)

δω
, ω ∈ [ωmin, ωmax], (7)

where C is a constant found through iterative optimization such that the MSE between the
second term of Equation (7) and

∣∣Hij(ω)
∣∣ is minimized around ω = ω∗.

Figure 2 shows the application of the proposed methodology. Here, one of the historical
violins (i.e., H1) is taken as an example. Figure 2a depicts its FRF magnitude. It can be seen
that the four signature modes are easily identifiable up to around 700 Hz, while modes are
more overlapped for higher frequencies. Using these modes, the reconstruction obtained
through modal superposition (Figure 2b) approximates the FRF up to ωmid.

The second component in Equation (7) accounts for the reconstruction of the mid-
frequency portion of the FRF (Figure 2c). The parameters controlling σ′(ω, ωmid, ω∗, k∗) are
the result of the fitting performed on the RP curve of H1.

The combination of the two models in Figure 2d resembles a “cleaner” version of the
original measured signal. Indeed, the reconstructed signal keeps the same energy balance
between low and mid components. By computing the residual as the relative difference
between measure and reconstruction, as depicted in Figure 2e, we can assess where the
model fails at recovering the original signal measured.
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Figure 2. Example of measured bridge admittance and relative feature-based reconstruction. From top
to bottom, the original signal (a), its analytical approximation in the low-frequency range through
modal superposition (b), its reconstruction based on the sigmoid model in the mid-frequency
range (c), and their linear combination (d) are shown. The relative difference between measured
and reconstructed signals is assessed in percentage as a function of frequency (e). Magnitudes are
reported in [dB re 1 m s−1 N−1].
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In the specific case of H1, the reconstructed signature modes resemble the original
ones and the residual oscillates around 5% close to antiresonance frequencies. A relevant
increase of the residual up to 40% is then encountered around 1 kHz. The frequency span
characterized by large values of the residuals covers the portion of FRF dominated by
transitional modes. For a subset of FRFs in the dataset, transitional modes exhibit low
mode overlapping and modal superposition may model the FRF better than the proposed
energy-based model. However, a common trend was not found throughout the dataset and
further research is needed to improve the model within this frequency range.

In the case of H1, the proposed reconstruction is also able to model the region of the
FRF between 1500 and 3000 Hz. Here, the residual stabilizes between 5% and 10% except
for spikes corresponding to the presence of peaks or deeps in this portion of the spectrum,
which cannot be recognized however as individual modes.

Finally, the reconstruction fails at explaining the trend of the admittance for higher
frequencies, i.e., between 4000 and 4500 Hz. In this range, the FRF exhibits a more linear
trend, and the residual reaches values around 20%. The feature khigh has been indeed
introduced to overcome this lack of information, defined as the slope of the linear fit limited
to the high frequency range mentioned.

3. Results
3.1. Relative Power Analysis

We focus only on the analysis of the estimated RP curves. Indeed, an in-depth discus-
sion of the low-frequency features is already presented in [16].

Figure 1a shows, in terms of relative power, all the violins in the dataset (solid light
blue lines) along with two violins that can be considered as “outliers”: on one hand an
industrial violin made of plywood (dash-dotted dark red line), and on the other, a violin
entirely made of marble, except for the bridge and tailpiece (dotted violet line). It can be
noticed that all the RP curves are concentrated in the middle between the two outliers.
By computing the mean over all the RP curves in the dataset (dark green solid line),
a sigmoidal trend can be observed. Moreover, the largest variation among the RP curves
can be observed between 2000 and 3000 Hz if the standard deviation is evaluated as a
function of frequency. In this frequency interval, the center of the sigmoid occurs for all the
violins in the dataset.

Concerning the clearly different behavior of the outliers, as we said the major difference
between them and the other violins is the material used for these instruments. Despite
being shifted in the frequency axis, the shape of the RP curves still follows a sigmoidal
trend. In the case of plywood, its specific stiffness (i.e., the ratio between the Young’s
modulus, being it the constant describing the material stiffness, and the density) is far
smaller than typical spruce wood, as well as being less anisotropic [26]. For marble it is the
contrary: the material is far stiffer and denser than spruce. Both violins have roughly the
same geometric characteristics, in terms of dimensions, arching, and thickness profile, so
we can interpret the difference in the RP curves to their vastly different materials. Although
a sigmoidal behavior can be seen for the averaged RP, the accuracy of the actual fitting
varies from one violin to another. As an example, Figure 1b shows one of the worst sigmoid
fits obtained (i.e., violin M1). It can be seen that the sigmoid curve (dashed red line) fails
at approximating the measured RP (solid blue line). This may be due to the irregular and
bumpy behavior of the RP curve, especially in the frequency range where the sigmoid
is centered.

To have a measure of the “regularity” of the energy distribution, we computed the
area difference ∆A (Figure 1b, colored in green) throughout the dataset. Figure 1c lists all
the resulting values, in ascending order. Anecdotally, the four violins characterized by the
lowest values are H3, H2, M22, and H1. These are the three Stradivari violins present in the
dataset and a fine modern copy of one of them used by a professional musician. Conversely,
the poor fit already observed for M1 corresponds to one of the highest values of ∆A. For
the ease of reading, the label of M1 is colored in red in Figure 1c.
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From the analysis of the RP curves and the features related, we can conclude that
the sigmoid is able to model the majority of the RP curves in the dataset, especially the
Stradivari violins.

3.2. Violin Clustering

Given the features defined in Sections 2.3 and 2.4, the resulting feature space consid-
ered has thus 19 dimensions, leading to a feature matrix in RM×19, where M = 25. Z-score
normalization [27] has been applied over each feature vector inside the feature matrix to
equalize values within a common scale. Once normalized, an Euclidean distance can be
computed over the feature vectors characterizing each pair of admittances, leading to a
distance matrix D ∈ RM×M. Notice that all the features have the same relative importance
to define our distance. In perceptual terms this could not hold, as some features can have a
far larger influence than others. However, further studies are needed in this sense to define
a “perceptual distance” between instruments.

Figure 3a shows the distance matrix D, with the elements sorted following the hierar-
chy of a dendrogram [28]. The dendrogram is computed iteratively using farthest neighbor
clustering to define the hierarchical relations [29]. In this way, similar violins (i.e., pairs of
instruments with a small distance) are clustered together.

We decided to cut the dendrogram at a value of the farthest neighbor distance equal
to 50 (vertical cyan line) as the link between H3, M22 and the remaining Stradivari vio-
lins occurs at around 48. As a result, four clusters with varying sizes can be observed:
(i) M17-M13-M18-M5-M16-M3-M8-M6-M7, (ii) M12-M14-M4-M1-M19-M11-M20-M10-M9,
(iii) M21-M15, and (iv) H1-M2-H2-H3.

It is noteworthy that the distance between M22 and H1 is lower than the one assessed
between M22 and its model H3. The similarity between M22 and H3 was already confirmed
up to 1400 Hz in [16] (referred to as “V1” and “Strad” ), where the first ten peaks were
chosen as features. To investigate which features the similarity between M22 and H1 mostly
relies on, we visually compare the bridge admittance of the three violins.

Figure 3b shows the three FRFs overlapped. Looking at the low-frequency range,
the modes of M22 (dash-dotted blue line) resemble both those of its original H3 (dotted red
line) and H1 (dashed yellow line). In terms of Euclidean distances, the distance computed
considering only the low-frequency features yields comparable values: 7.72 between M22
and H1, and 8.92 between M22 and H3. However, a huge difference can be observed at
mid frequencies, where H3 is characterized by a high-energy region centered at a lower
frequency (1632 Hz against 2402 Hz for M22 and 2634 Hz for H1) and more limited in
amplitude with respect to M22 and H1 (−24.2 dB against −16 dB for M22 and −14.9 dB
for H1). Due to this difference, the proposed similarity metric varies greatly between the
two pairs of violins: 9.51 between M22 and H1, 17.88 between M22 and H3.

The same considerations can be inferred more clearly by inspecting the corresponding
feature-based reconstructions in Figure 3c. In particular, the reconstruction of the high-
energy region better highlights its position and width and thus makes the visual comparison
between different instruments much easier.
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Figure 3. (a) Euclidean distance matrix, with elements sorted following the dendrogram hierarchy.
In this way, similar violins cluster together (colored in red). Four clusters are obtained by cutting the
dendrogram at a farthest neighbor distance equal to 50 (vertical cyan line). (b) The bridge admittance
of M22 (dash-dotted blue line) compared to those of H3 (dotted red line) and H1 (dashed yellow
line), and (c) corresponding reconstructions from the feature space. Magnitudes are reported in
[dB re 1 m s−1 N−1]. The similarity between these violins leads to the cluster at the bottom-right
corner of the distance matrix. The comparison of the three reconstructions highlights the different
similarities: the signature modes of M22 are similar to those of both H3 and H1 while its mid-range
resembles more that of H1.

3.3. Correlation between Features and PCA

To understand if these “hand-crafted” features are linearly independent and statis-
tically significant, we computed the Pearson correlation coefficient between the column
vectors of the feature matrix extracted from the dataset. Subsequently, we performed
principal component analysis on the same matrix.

Figure 4a shows the matrix of the Pearson correlation where the absolute value of the
correlation coefficients is reported for each pair of features in the set. The values range
between 0 and 1, and moderate or strong correlation occurs for values greater than 0.3 [30].

The signature mode frequencies ( f1, . . . , f4) generate a cluster inside the matrix, with co-
efficients ranging between 0.5 and 0.65, therefore they are strongly correlated. Another
cluster can be observed for (p1, . . . , p4). In this case, the signature mode amplitudes show
a moderate correlation with values around 0.3, except for (p1, p2) where the largest coeffi-
cient occurs in the matrix (0.75). Conversely, an interpretation regarding the correlation
coefficients of the signature mode damping (q1, . . . , q4) is harder to infer from the matrix. It
is interesting to note that indeed the frequency and the amplitude of the peaks seem to be
orthogonal descriptors of the FRF.
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Furthermore, low correlation can be seen in general between the subsets of low-
frequency and mid-frequency features. By looking at the submatrix on the bottom-left
of Figure 4a (outlined by dashed red lines), the only correlated features are ωmid, RPmid
and ω∗. Indeed, ωmid and ω∗ are linearly related to ( f1, . . . , f4) while RPmid is strongly
correlated with (p3, p4).
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Figure 4. (a) Matrix of the Pearson correlation between features. The absolute value of the coefficients,
ranging between 0 and 1, is reported. Explicit values are shown only for combinations of features
with moderate and strong correlation (≥0.3). (b) The normalized cumulative sum of the eigenvalues
obtained with PCA. A dashed red line highlights how many components are needed to recover 96.7%
of the original information. (c) Feature importance in the first twelve principal components. Explicit
values are shown only when greater than 0.05. Interestingly enough, frequencies and amplitudes
in signature modes are almost independent and the mid-frequency features mainly constitute the
second principal component.

If we limit the analysis to the subset of mid-frequency features, the sigmoid curvature
k∗ and the area difference ∆A show a correlation coefficient above 0.3 with most of the
other features. On one hand, the curvature of the RP curve (k∗) is correlated to its behavior
at the extremes of the range: strong correlation with RPmid (0.64) and moderate correlation
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with khigh (0.43), ωmid (0.36), and ∆A (0.36). On the other hand, strong correlation can be
observed between ∆A and features characterizing the central part of the sigmoid: ω∗ (0.52),
RP∗ (0.4), k∗ (0.36), and RPmid (0.32). As a consequence, one could infer an estimate for k∗

starting from (ωmid, RPmid, khigh, ∆A) and for ∆A given (ω∗, RP∗, k∗, RPmid).
Figure 4b shows the cumulative sum of the eigenvalues obtained with PCA. The

cumulative function is normalized such that the eigenvalues sum to 1. Twelve principal
components out of nineteen account for 96.7% of the total variance of the set.

Figure 4c shows the absolute value of the coefficients for the first twelve principal
components. We normalized the resulting values such that the sum is equal to 1 for
each component.

Although no clear patterns can be observed inside the matrix, it can be noticed that
some features contribute more than others. Indeed, frequencies ( f1, . . . , f4) dominate the
first principal component, with values greater than 0.08. Additionally, the amplitudes
(p1, . . . , p4) show noticeable values in the most informative components (1 and 3). Con-
versely, the damping features (q1, . . . , q4) start occurring later inside the PCA vectors (only
after the third). Interestingly enough, the mid-frequency features occur in the first two
principal components. We can thus conclude that the mid-frequency features are as statisti-
cally significant as modal frequencies and amplitudes in defining an FRF. To the best of our
knowledge this is the first result showing such objective relevance of the mid range features.

4. Discussion

The features we have defined to compare violins have three advantages with respect to
the literature: (a) they are objectively defined and they can be easily computed from any FRF.
(b) They can be used to roughly reconstruct the FRF signal with just a handful of parameters.
This could be extremely useful in virtual analog simulations of instruments [13], as an
example. (c) They provide a reduced dimensional representation of the FRF whence an
objective distance metric can be computed. Hitherto in the literature, this comparison has
been purely visual and subjective.

One of these features, i.e., the degree to which the high power spectrum approximates
a sigmoid function, has been found to anecdotally correlate with the subjective quality of
the instruments: three Stradivari and one bench copy of one of them have the lowest values
for this feature. The copy of the Stradivari is in possession of a renowned professional
musician, and he states that both violins have a very similar sound.

We have also found that these quality violins live in a “Goldilocks zone” for relative
power. That Goldilocks zone seems to depend on the material of the instrument: if the
material is too soft, the instrument has no tone, as the cheap violin shows. If the material
is too stiff, as in the case of the marble violin, there is no body to the sound and it lacks
projection. Studying in depth how design and material parameters influence the shape of
the relative power may give valuable insights in how to craft a quality instrument.

Once the bridge admittances are projected into the feature representation, one can
assess the similarity between different instruments by simply computing a Euclidean
distance. Additionally, in this case, the three Stradivari and the modern copy have been
found to cluster together.

If compared to the feature representation presented in [16], the extension of the
representation to the mid-frequency range led to a more informative similarity metric.
Indeed, the new Euclidean distance highlighted that the bench copy is more similar to
another Stradivari violin rather than its original. By comparing the reconstructed FRFs, it is
clear that the difference relies on the frame of the signal related to the so-called bridge hill.

This evidence, together with the importance of the mid-frequency features highlighted
by PCA, may suggest that not only the shape and the material used for the violin soundbox
but also its interaction with the other components (i.e., the bridge) play a crucial role in
defining the characteristics of the instrument. Studying the impact of the violin setup (e.g.,
tuning of the bridge and the tailpiece) on these features may give a new tool to violin
makers and musicians to design the violin sound from a vibrational standpoint.
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One limitation is that our model does not consider the transitional modes between 700
and 1200 Hz, but they could be easily included. Our own research does show, however,
that at least for the top plate [10], the higher modes are highly correlated with the low
modes so its inclusion should not change the clustering or the definition of the distance
matrix. To overcome this limitation, a possible extension of the current feature set could
be envisioned through the definition of additional descriptors derived from the RP curve.
These new features could deal with transitional modes separately from the mid-frequency
range, as a simpler alternative to mode fitting.

In its current version, the feature representation proposed allows the comparison
between different instruments only in terms of vibration. Indeed, how much these features
are relevant from a perceptual point of view and how they should be “prioritized” while de-
signing a musical instrument are still open questions. However, the proposed methodology
could be used to synthesize a variety of “virtual” violins to assess the perceptual weights
of the features through listening tests [31]. Since most of the features presented here seem
to be possible to predict from the material and geometric parameters of the instrument [32],
the dream of having a virtual workbench where one can sonically design an instrument to
optimize perception is one step closer.
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