47 research outputs found
Thermal Diffusion and Specular Reflection, Monte Carlo-based Study on Human Skin via Pulsed Fiber Laser Energy
The aim of traditional Chinese medicine (TCM) in acupuncture is sometimes to restore and regulate energy balance by stimulating specific points along the specific meridians traced on the human body via different techniques such as mechanical pressure, moxibustion and others. Hence, physicians have struggled to improve treatment for common diseases such as migraine and headaches. Heat stimulation and some pharmacological effects from moxa have been attributed to the therapeutic efficacy of such techniques. As heat can diffuse through the tissue, skins temperature will rise in the surrounding tissue. In this work, heat diffusion on a simple, 5-layer model of human skin is presented. Based on this, and by using Monte Carlo techniques, a photon or a photon package is launched into the tissue for mimicking the propagation of such photons at two different wavelengths through the tissue. The method generally describes the scholastic nature of radiation interactions. Most of the laser energy is deposited within a volume which cross-sectional area is the size of the beam itself. As could be seen, in the epidermis layer of the model, the heat does not go deep and nearly all the heat diffusion occurs on the edges of the beam, causing losses. Heat dissipation occurs faster and goes down to 2°C in the adipose tissue since there is low water content in this region. On the contrary, there is a fast heat increase in the muscle layer, up to 6°C at the most superficial layer. Since melanin is the most important epidermal chromophore, it can be noted that light shows strong absorption via melanin, at 690nm laser wavelength. In the papillary dermis the heat decreases and spreads out to the surrounding tissue. Once it reaches the adipose tissue, the heat is not absorbed enough; therefore, it is transmitted into the muscle, where the temperature rise is higher and reaches nearly 40 °C. Finally, photodynamics in a simple 5-layer skin model were explored at two laser wavelengths: 690nm and 1069nm, where no thermal damage would be expected, given the energy level of the employed pulses. Such pulsed laser energy levels remain to be tested in living tissue
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is
to measure the MeV neutrinos produced by a Galactic
core-collapse supernova if one should occur during the lifetime of the
experiment. The liquid-argon-based detectors planned for DUNE are expected to
be uniquely sensitive to the component of the supernova flux, enabling
a wide variety of physics and astrophysics measurements. A key requirement for
a correct interpretation of these measurements is a good understanding of the
energy-dependent total cross section for charged-current
absorption on argon. In the context of a simulated extraction of
supernova spectral parameters from a toy analysis, we investigate the
impact of modeling uncertainties on DUNE's supernova neutrino
physics sensitivity for the first time. We find that the currently large
theoretical uncertainties on must be substantially reduced
before the flux parameters can be extracted reliably: in the absence of
external constraints, a measurement of the integrated neutrino luminosity with
less than 10\% bias with DUNE requires to be known to about 5%.
The neutrino spectral shape parameters can be known to better than 10% for a
20% uncertainty on the cross-section scale, although they will be sensitive to
uncertainties on the shape of . A direct measurement of
low-energy -argon scattering would be invaluable for improving the
theoretical precision to the needed level.Comment: 25 pages, 21 figure
The DUNE far detector vertical drift technology. Technical design report
DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
Performance of a modular ton-scale pixel-readout liquid argon time projection chamber
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
Analysis of the influence of the environment, stakeholder integration capability, absorptive capacity, and technological skills on organizational performance through corporate entrepreneurship
This research seeks to analyze how factors such as the environment, stakeholder integration capability, absorptive capacity, and technological skills influence corporate entrepreneurship, and the repercussions of corporate entrepreneurship for the organization’s results. The hypotheses are tested empirically using a sample of 160 European technology firms. A positive relationship is found between the factors of the environment and stakeholder integration capability, and corporate entrepreneurship. The uncertainty and complexity of the environment in which the organization operates and its relationship with stakeholders require the firm to be involved in constant updating, collaboration between parties, and innovation of processes, products, and system to maintain competitive advantage. Further, the capacity to absorb new knowledge and develop technological skills can generate new, advanced technological processes. These processes foster corporate entrepreneurship to detect opportunities on the market and transform them into additional advantage over competitors. Corporate entrepreneurship increases organizational performance, as it entrusts entrepreneurs with the task of utilizing potentially value-creating resources more effectively than competitors.Excellence Research Projects P08- SEJ-04057 from the Andalusian Regional GovernmentExcellence Research Projects P11-SEJ-7988 from the Andalusian Regional GovernmentProjects ECO2009-09241 from the Spanish Ministry of Innovation.Projects ECO2012-31780 from the Spanish Ministry of Innovation
The DUNE far detector vertical drift technology Technical design report
DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
The DUNE far detector vertical drift technology Technical design report
DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of nonuniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen