153 research outputs found

    Behavioural hybrid process calculus

    Get PDF
    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in the presence of nondeterminism, system composition by interconnection of concurrent component systems, and notions of behavioural equivalence of such systems. It has contributed fundamental concepts such as bisimulation, and has been successfully used in a wide range of problems and practical applications in concurrent systems. We believe that the basic tenets of process algebra are highly compatible with the behavioural approach to dynamical systems. In our contribution we present an extension of classical process algebra that is suitable for the modelling and analysis of continuous and hybrid dynamical systems. It provides a natural framework for the concurrent composition of such systems, and can deal with nondeterministic behaviour that may arise from the occurrence of internal switching events. Standard process algebraic techniques lead to the characterisation of the observable behaviour of such systems as equivalence classes under some suitably adapted notion of bisimulation

    Model Checking: Verification or Debugging?

    Get PDF

    A Calculus for Timed Automata (Extended Abstract)

    Get PDF
    A language for representing timed automata is introduced. Its semantics i defined in terms of timed automata. This language is complete in the sense that any timed automaton can be represented by a term in the language. We also define a direct operational semantics for the language in terms of (timed) transition systems. This is proven to be equivalent (or, more precisely, timed bisimilar) to the interpretation in terms of timed automata. In addition, a set of axioms is given that is shown to be sound for timed bisimulation. Finally, we introduce several features including the parallel composition and derived time operations like wait, time-out and urgency. We conclude with an example and show that we can eliminate non-reachable states using algebraic techniques

    Process Algebra and Markov Chains

    Get PDF

    Testing refinements by refining tests

    Get PDF
    One of the potential benefits of formal methods is that they offer the possibility of reducing the costs of testing. A specification acts as both the benchmark against which any implementation is tested, and also as the means by which tests are generated. There has therefore been interest in developing test generation techniques from formal specifications, and a number of different methods have been derived for state based languages such as Z, B and VDM. However, in addition to deriving tests from a formal specification, we might wish to refine the specification further before its implementation. The purpose of this paper is to explore the relationship between testing and refinement. As our model for test generation we use a DNF partition analysis for operations written in Z, which produces a number of disjoint test cases for each operation. In this paper we discuss how the partition analysis of an operation alters upon refinement, and we develop techniques that allow us to refine abstract tests in order to generate test cases for a refinement. To do so we use (and extend existing) methods for calculating the weakest data refinement of a specification

    Viewpoint consistency in Z and LOTOS: A case study

    Get PDF
    Specification by viewpoints is advocated as a suitable method of specifying complex systems. Each viewpoint describes the envisaged system from a particular perspective, using concepts and specification languages best suited for that perspective. Inherent in any viewpoint approach is the need to check or manage the consistency of viewpoints and to show that the different viewpoints do not impose contradictory requirements. In previous work we have described a range of techniques for consistency checking, refinement, and translation between viewpoint specifications, in particular for the languages LOTOS and Z. These two languages are advocated in a particular viewpoint model, viz. that of the Open Distributed Processing (ODP) reference model. In this paper we present a case study which demonstrates how all these techniques can be combined in order to show consistency between a viewpoint specified in LOTOS and one specified in Z. Keywords: Viewpoints; Consistency; Z; LOTOS; ODP

    Conformance relations for distributed testing based on CSP

    Get PDF
    Copyright @ 2011 Springer Berlin HeidelbergCSP is a well established process algebra that provides comprehensive theoretical and practical support for refinement-based design and verification of systems. Recently, a testing theory for CSP has also been presented. In this paper, we explore the problem of testing from a CSP specification when observations are made by a set of distributed testers. We build on previous work on input-output transition systems, but the use of CSP leads to significant differences, since some of its conformance (refinement) relations consider failures as well as traces. In addition, we allow events to be observed by more than one tester. We show how the CSP notions of refinement can be adapted to distributed testing. We consider two contexts: when the testers are entirely independent and when they can cooperate. Finally, we give some preliminary results on test-case generation and the use of coordination messages. © 2011 IFIP International Federation for Information Processing

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat

    No full text
    International audienceThis paper describes a new ozone column retrieval algorithm and its application to SCIAMACHY measurements. The TOSOMI algorithm is based on the Differential Optical Absorption Spectroscopy (DOAS) technique and implements several improvements over older algorithms. These improvements include aspects like (i) the explicit treatment of rotational Raman scattering, (ii) an improved air-mass factor formulation which is based on a simulation of the reflectivity spectrum and a subsequent DOAS fit of this simulated spectrum, (iii) the use of an improved ozone climatology and a column dependent air-mass factor, (iv) the use of daily varying ECMWF temperature profile analyses. The results of three validation exercises are reported. The TOSOMI columns are compared with an extensive set of ground-based observations (Brewer, Dobson) for the years 2003 and 2004. Secondly, a direct comparison for January?June 2003 with two new GOME retrievals, GDP Version 4 and TOGOMI, is presented. Third, data assimilation is used to study the dependence of the TOSOMI columns with retrieval parameters such as the viewing angle, cloud fraction and geographical location. These comparisons show a good consistency on the percent level between the GOME and SCIAMACHY algorithms. The present TOSOMI implementation (v0.32) shows an offset of about ?1.5% with respect to ground-based observations and the GOME retrievals

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing
    corecore