
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Derrick, John and Boiten, Eerke Albert (1998) Testing refinements by refining tests. In: 11th
International Conference of Z Users on the Z Formal Specification Notation (ZUM 98), SEP 24-26,
1998, Berlin, Germany.

DOI

Link to record in KAR

http://kar.kent.ac.uk/17694/

Document Version

UNSPECIFIED

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Testing Re�nements by Re�ning TestsJohn Derrick and Eerke BoitenComputing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.J.Derrick@ukc.ac.ukAbstract. One of the potential bene�ts of formal methods is that theyo�er the possibility of reducing the costs of testing. A speci�cation actsas both the benchmark against which any implementation is tested, andalso as the means by which tests are generated. There has thereforebeen interest in developing test generation techniques from formal spec-i�cations, and a number of di�erent methods have been derived for statebased languages such as Z, B and VDM. However, in addition to derivingtests from a formal speci�cation, we might wish to re�ne the speci�cationfurther before its implementation.The purpose of this paper is to explore the relationship between testingand re�nement. As our model for test generation we use a DNF parti-tion analysis for operations written in Z, which produces a number ofdisjoint test cases for each operation. In this paper we discuss how thepartition analysis of an operation alters upon re�nement, and we developtechniques that allow us to re�ne abstract tests in order to generate testcases for a re�nement. To do so we use (and extend existing) methodsfor calculating the weakest data re�nement of a speci�cation.Keywords: Testing; Partition Analysis; Disjunctive Normal Form;Re�nement; Calculating data re�nements.1 IntroductionTesting and speci�cations are intrinsically interlinked. Speci�cations act as thebenchmark against which any implementation is tested, and they also providea means by which to generate the tests themselves. The advent and use of for-mal methods does not change this. Although the aim of formal methods is tomove some of the e�ort spent on error detection to more e�ort spent on cor-rect construction, even a fully veri�ed formal development will at some stage betested against the original speci�cation. Indeed, the use of formal methods o�ersa promise of reduced overall development cost by automating part of the testingprocess.There has therefore been interest in developing techniques by which test casegeneration and test case scheduling can be automatically (or semi-automatically)generated from formal speci�cations. Di�erent paradigms have developed di�er-ent ways to do this, and techniques for state based languages such as Z [17], B[1] and VDM [12] have been developed, see for example [14, 5, 8, 4, 11, 18].

There are many aspects to the provision of formal support for the testingprocess. In this paper we shall be concerned with the issue of test case gen-eration from individual operations. The attraction of using an abstract formalspeci�cation as the basis to generate the tests (as opposed to an informal spec-i�cation of even an implementation) is that it concisely captures the essentialbehaviour required: any correct implementation should pass all the tests derivedfrom this speci�cation, and yet the tests will be as abstract as possible, ensuringtheir number is kept low.One elegant and simple method for generating and sequencing tests fromstate based languages has been developed by Dick and Faivre [8]. The basictechnique of test generation consists of a partition analysis, which reduces thespeci�cation of each operation into its Disjunctive Normal Form (DNF). Theapproach was based on VDM, but has been applied to Z in [11, 15] and Bin [20], and bene�ts from tool support, which is described in [8] and [20]. [11]describes an industrial application of the method to an aircraft control system.However, in addition to deriving tests from a formal speci�cation, we mightwish to develop or re�ne the speci�cation further before its implementation.Indeed we can view any implementation as a re�nement of the original speci�-cation. The conditions under which a development is a correct re�nement areencapsulated into two re�nement rules: downward and upward simulations [22].To verify a re�nement the simulations use a retrieve relation which relates theconcrete to abstract states.The purpose of this paper is to explore the relationship between testing andre�nement. In particular, we aim to develop techniques whereby we can reuseabstract tests to develop tests for a concrete speci�cation or implementation. Asour model for test generation we use the DNF partition analysis for operationswritten in Z as discussed in [11], although it should be noted that the methodsare applicable to other testing scenarios and state based languages such as Band VDM.Dick and Faivre did not consider further re�nements of the abstract speci�ca-tion, however, they posed the open question: does re�ning a speci�cation createa super-set of the partitions of the previous level? We will answer this question inthe negative. We will then go onto answer the question: how do we generate testsfor a re�nement based on the tests derived from the abstract speci�cation? We doso by developing a means to calculate concrete tests based upon methods thatgenerate the weakest (i.e. most general) re�nement of an abstract operation. Wedo this �rst for re�nements which are downward simulations, and we discuss theproperties of the constructed tests, and in particular whether they capture allthe requirements and whether they are disjoint. We next develop similar resultsfor upward simulations, however, here we �rst have to derive techniques to cal-culate the weakest upward simulation of an operation. In each case the resultssimplify if the retrieve relation used in the re�nement is a surjective functionfrom concrete to abstract state spaces.The structure of the paper is as follows. Section 2 introduces the methodof DNF partition analysis, and Section 3 provides some background material

on re�nement in Z. Sections 4 and 5 form the heart of the paper where wedevelop the theory of testing re�nements by re�ning tests, and discuss relevantproperties. Section 4 looks at downward simulations and Section 5 considersupward simulations. We conclude in Section 6.2 TestingTesting is an indespensible part of the software construction and maintenanceprocess, irrespective of whether or not the development of a system has involvedthe use of formal methods and veri�cation. Therefore there has been considerableinterest in the use of formal methods to support the testing process as opposedto viewing formal methods as an alternative to the testing process [19, 5, 8, 4,11, 18].Di�erent formal paradigms have associated methods for aiding this test gen-eration process in an automatic, semi-automatic or manual fashion. For example,there has been considerable research on testing speci�cations in the context ofprocess algebras [10, 6, 3, 2]. There has also been analogous work for state basedlanguages such as Z, B and VDM. The approach we consider here is that ofDick and Faivre [8], which describes a means to automate test generation andsequencing from VDM speci�cations, and has also been applied to Z speci�ca-tions in [11, 15]. For example, [11] describes application of this methodology to aportion of the Cabin Intercommunication Data System for the Airbus A330/340aircraft. An alternative approach to testing is discussed in [18] which derives atesting methodology suitable for the construction of tests from OSI ManagedObject speci�cations [21], and manual approaches to test generation have alsobeen considered in [14, 4].Dick and Faivre consider the complete testing activity from test generationfrom individual operations, through the scheduling of tests, to the veri�cationof test results. The basic technique of test case generation consists of a partitionanalysis, which reduces the speci�cation of each operation into its DisjunctiveNormal Form (DNF). Each element in the DNF represents an individual testcase for the operation. The partition then serves as a basis for the constructionof a �nite state automaton (FSA) which is then used to derive test suites (i.e. astructured sequence of test cases).In this paper we are concerned with the use of DNFs to provide a suitablepartition analysis of operations, and we aim to show how this partition altersupon re�nement.As an example of the methodology let us consider the speci�cation of acinema box o�ce (adapted from [22] and [16]). The Kurbel box o�ce allowscustomers to book tickets in advance by telephone. When a customer calls, ifthere is an available ticket then the customer's name is simply recorded. Whena customer whose name has been recorded arrives at the box o�ce, a ticket isallocated. The Kurbel is speci�ed as follows.

Kurbelkpool : PTicketbkd : PName KInitKurbel 0bkd 0 = ?KBook�Kurbelname? : Namename? 62 bkd#bkd < #kpoolbkd 0 = bkd [fname?gkpool 0 = kpool
KArrive�Kurbelname? : Namet ! : Ticketname? 2 bkdbkd 0 = bkd n fname?gt ! 2 kpoolkpool 0 = kpool n ft !gThe state variable kpool denotes the pool of tickets and bkd denotes theset of names of customers who have booked a ticket. The operation KBookrecords a booking provided that there are currently less bookings than tickets.The operation KArrive allocates a ticket to a customer who has a booking. Inorder to test an implementation of the box o�ce we generate test cases for eachoperation in the speci�cation.We do this by transforming each operation into a DNF. Each schema in thisDNF then represents a single test case. Each test case will be disjoint, allowingthem all to be treated separately. The transformation into test cases for KBookand KArrive is thus given by (to simplify the presentation we just consider testsfor a single �xed input name? throughout the paper):KBook = KBookKArrive = Wt2kpool KAt whereKAt�Kurbelname? : Namet ! : Ticketname? 2 bkdbkd 0 = bkd n fname?gt ! = tkpool 0 = kpool n ft !gWe have used a distributed disjunction (W) here, which although nonstan-dard Z, can be de�ned in the obvious manner (for example, by 9 t : kpool � KAt).Similarly, the equality sign between schemas should be viewed as schema equiv-alence. We retain W and = for the sake of clarity.From this we see that KBook is already in DNF, and thus represents a singleatomic test case in itself. However, KArrive has a number of test cases, each

one representing a di�erent possible choice of allocated ticket. This structuringof test cases as DNFs has two important properties: coverage and disjointness;that is, KArrive equals the disjunction of its test cases (coverage) and thesetests are disjoint. In general we say that a collection of tests fAOpigi covers anoperation AOp acting on state space Astate ifAOp = Wi AOpiand that the tests are disjoint, if, for all i 6= j:9Astate; Astate 0 � AOpi ^ AOpjIt is easy to see that fKAtgt2kpool form a disjoint covering of KArrive.Note that there are many possible decompositions of an operation into DNF,and not every decomposition will produce test cases considering single elementst 2 kpool . For example, if kpool was in�nite some of the test cases would containin�nite partitions of kpool representing the various test cases we are interested in.It is by this means that a �nite state machine can be obtained from a speci�cationwith in�nite state. See [8] for a discussion of this point.3 Re�nementIn addition to deriving tests from a formal speci�cation, we might wish to re�nethe speci�cation further before its implementation. Such a re�nement might typ-ically weaken the precondition of an operation, remove some non-determinismor even alter the state space of the speci�cation. The conditions under which adevelopment is a correct re�nement are encapsulated into two rules: downwardand upward simulations [22]. These re�nement rules are known to be sound andjointly complete, that is any upward or downward simulation is a valid re�ne-ment, and any re�nement can be proved correct by application of appropriateupward and downward simulations [9, 23]. (Downward and upward simulationsare sometimes also known as forward and backward simulations respectively.)The downward simulation rules are more straightforward, and form the usualpresentation of re�nement (e.g. as in [17]), however, upward simulations areoccasionally necessary, for example when the resolution of non-determinism hasbeen postponed [22]. Let us consider an abstract speci�cation with state spaceAstate and initialisation schema Ainit being re�ned by a concrete speci�cationwith state space Cstate and initialisation schema Cinit .De�nition 1. Downward simulationThe concrete speci�cation is a downward simulation of the abstract if there isa retrieve relation Ret such that every abstract operation AOp is recast into aconcrete operation COp and the following hold.DS.1 8Astate; Cstate � preAOp ^ Ret =) preCOpDS.2 8Astate; Cstate; Cstate 0 � Ret ^ preAOp ^ COp =) 9Astate 0 � Ret 0 ^AOp

DS.3 8Cstate 0 � Cinit =) 9Astate 0 � Ainit ^ RetDe�nition 2. Upward simulationThe concrete speci�cation is an upward simulation of the abstract if there isa retrieve relation Ret such that every abstract operation AOp is recast into aconcrete operation COp and the following hold.US.1 8Cstate � (8Astate � Ret =) preAOp) =) preCOpUS.2 8Astate 0; Cstate; Cstate 0 � (8Astate � Ret =) preAOp) =) (COp ^Ret 0 =) 9Astate � Ret ^ AOp)US.3 8Astate 0; Cstate 0 � Cinit ^ Ret 0 =) AinitAs an example, consider the speci�cation of the Marlowe box o�ce. Like theKurbel, the Marlowe box o�ce allows customers to book tickets in advance bytelephone. However, the procedure is di�erent from that used at the Kurbel.When a customer calls, if there is an available ticket then one is allocated andput to one side for the caller. When the customer arrives, they are presentedwith this ticket.Marlowempool : PTickettkt : Name 7� Ticket MInitMarlowe 0tkt = ?MBook�Marlowename? : Namename? 62 dom tktmpool 6= ?9 t : mpool �mpool 0 = mpool n ftgtkt 0 = tkt [fname? 7! tg
MArrive�Marlowename? : Namet ! : Ticketname? 2 dom tktt ! = tkt(name?)tkt 0 = fname?g �C tktmpool 0 = mpoolThe contrast between the Marlowe and the Kurbel box o�ces is the point ofallocation of tickets (at booking time vs at collection time). However, at this levelof abstraction the customer cannot tell that the Kurbel is behaving di�erentlyto the Marlowe, and this can be demonstrated by showing (see [22]) that theMarlowe is a downward simulation of the Kurbel where the retrieve relation isgiven byRetKurbelMarlowebkd = dom tktkpool = mpool [ran tktmpool \ ran tkt = ?

In fact, the Kurbel speci�cation is also a re�nement of the Marlowe, butthis must be shown using an upward simulation (i.e. it is not a downwardssimulation), where we use the same retrieve relation as before. Therefore theMarlowe and Kurbel have identical observational behaviour, and so the tests forone speci�cation should be able to be applied to the other. In order to do thisand to be able to reuse abstract tests to test a re�nement we have to be able totranslate the state spaces of each test case, and we will use the retrieve relationto do this. This will involve us calculating re�nements, a process that we nowdescribe.3.1 Calculating Downward SimulationsGiven an abstract speci�cation, a concrete state space and a retrieve relationbetween the concrete and abstract state spaces, it is possible to calculate theweakest (most general) description of the concrete operations [13, 22]. Let Astateand Cstate be the abstract and concrete state spaces, Ret the retrieve relationand AOp an abstract operation. We calculate? the weakest re�nement COp ofAOp byCOp b= (9Astate � preAOp ^ Ret)^(8Astate � preAOp ^Ret) 9Astate 0 � AOp ^ Ret 0)In general, if it is not known whether Ret de�nes a re�nement, it is necessary tocheck the applicability. This is summarised in the following theorem (for a proofsee [13]) which shows that COp is the weakest re�nement of AOp, provided thatone exists.Theorem 1. Let us denote a downward simulation by vDS . Suppose that AOpspeci�es an operation over the abstract state space Astate. Let Cstate be a con-crete state space, and Ret a retrieve relation between concrete and abstract. LetCOp be de�ned as above. Then for every operation XAOp vDS X i� preAOp ^ Ret) preCOp and COp vDS XWe are interested in cases when it is known that Ret de�nes a re�nementsince we are generating tests for an existing development, therefore we knowthat applicability (preAOp ^ Ret) preCOp) holds. In these circumstancesCOp describes our most general concrete re�nement of the operation AOp.The calculation can be simpli�ed considerably ([13, 22]) when the retrieverelation de�nes a surjective (partial) function from Cstate to Astate, and we �ndthat the following su�ces for COp.COp b= 9Astate; Astate 0 � Ret ^ AOp ^ Ret 0? We use calculate in the sense that COp is described by a formula in terms of knowncomponents. One might also say that COp is speci�ed instead of calculated, andthat the speci�cation of COp is the starting point for its calculation through a seriesof simpli�cation steps.

For example, the retrieve relation from Marlowe to Kurbel could in factbe used to calculate the book and arrive operations in Marlowe. The retrieverelation is functional since both kpool and bkd are uniquely determined by Ret ,however, Ret is not surjective (states where #bkd > #kpool are not in the rangeof Ret). We can in fact make it surjective without altering the speci�cation byadding the state invariant #bkd � #kpool to Kurbel, the simpli�ed method ofcalculation can then be used.In fact it can be shown [7] that the complex formula given in Theorem 1 canalways be replaced by the simpli�ed version 9Astate; Astate 0 � Ret^AOp^Ret 0.We will therefore use this simpli�ed version subsequently.The method described in [13, 22] calculates the weakest downward simula-tion. We shall derive similar results for upward simulations in Section 5.1 below.3.2 Generating TestsThe technique we develop for generating tests for a re�nement is very simple.Given an abstract speci�cation with operation AOp and a covering disjoint set oftests fAOpigi ; a concrete speci�cation with operation COp which re�nes AOp,and a retrieve relation Ret , we generate a set of tests fCOpigi where each testCOpi is the weakest re�nement calculated from Ret and AOpi . The remainderof the paper discusses the two cases of downward and upward simulations sep-arately, and each case is subdivided according as to whether Ret is a surjectivefunction or not. In each case we explore the two questions:{ do the tests fCOpigi cover COp;{ are the tests fCOpigi disjoint.4 Re�ning Tests 1: Downward SimulationsDownward simulations are perhaps the most common form of state based re�ne-ment: we saw an example above where the Marlowe box o�ce was a downwardsimulation of the Kurbel box o�ce. How do the test cases of the operations in thetwo speci�cations compare, and in particular does re�ning a speci�cation createa super-set of the partitions of the previous level? [8]. To answer this questionlet us derive the test cases for the Marlowe operations:MArrive = MArriveMBook = Wt2mpool MBt whereMBt�Marlowename? : Namename? 62 dom tktmpool 6= ?mpool 0 = mpool n ftgtkt 0 = tkt [fname? 7! tg

and document the results in the following table.Kurbel MarloweBook KBook Wt2mpool MBtArrive Wt2kpool KAt MArriveFrom this table we see that for the book operation one test (KBook) be-comes #mpool tests (MBt) upon re�nement, whereas for the arrive operation acollection of #kpool tests become one. This clearly answers the question of Dickand Faivre in the negative in the �rst instance - we do not in general create asuper-set of the partition upon re�nement. Let us see how calculating the testse�ects coverage and disjointness in general.4.1 Functional Surjective Retrieve RelationWe �rst consider the particular case when the retrieve relation used is a surjec-tive function from concrete to abstract. Given an operation AOp with AOp =Wi AOpi being its disjoint set of tests, and a retrieve relation Ret which is asurjective function, the concrete tests are given byCOpi b= 9Astate; Astate 0 � Ret ^AOpi ^ Ret 0These will in some way represent test cases for the original concrete operationCOp, and in fact we have the following result.Theorem 2. Let AOp be an abstract operation with AOp = Wi AOpi being itsdisjoint set of tests. Let COp be a downward simulation of AOp. Let Ret be theretrieve relation. Let COpi be the concrete tests given above. ThenWi COpi vDS COpand if COp is the weakest downward simulation of AOp then COp = Wi COpi .ProofThe proof is simple, and follows from:Wi COpi = Wi (9Astate; Astate 0 � Ret ^ AOpi ^ Ret 0)= 9Astate; Astate 0 � Wi(Ret ^ AOpi ^Ret 0)= 9Astate; Astate 0 � Ret ^Wi AOpi ^ Ret 0= 9Astate; Astate 0 � Ret ^ AOp ^ Ret 0vDS COp2The practical consequences of this is that we can use abstract tests togetherwith the retrieve relation to calculate tests for a re�nement.

Example 1. Calculating tests for a re�nement.Consider the following two speci�cations which describe Sta� entering and leav-ing the box o�ce. The �rst is speci�ed using a setSSystems : PSta�#s � maxentry SInitSSystem 0s 0 = ?SEnter�SSystemp? : Sta�#s < maxentryp? 62 ss 0 = s [fp?g
SLeave�SSystemp? : Sta�p? 2 ss 0 = s n fp?gThe second description uses a list (an injective sequence)LSysteml : iseq Sta�#l � maxentry LInitLSystem 0l 0 = h iLEnter�LSystemp? : Sta�#l < maxentryp? 62 ran ll 0 = l a hp?i
LLeave�LSystemp? : Sta�p? 2 ran ll 0 = l � (Sta� n fp?g)The second speci�cation is a re�nement of the �rst (see [22]), where theretrieve relation is given byRetLSystemSSystems = ran lThis is a total surjective function from concrete (list) to abstract (set). Thetest cases of SEnter are just SEnter itself, however, calculating the weakestre�nement 9SSystem; SSystem 0 � Ret ^ SEnter ^ Ret 0 to give the concrete testcases produces:

LEnter�LSystemp? : Sta�#l < maxentryp? 62 ran lran l 0 = ran l [fp?gThe partition of this into DNF will produce a collection of tests fLEnterigi ,one for each possible choice of l 0 satisfying ran l 0 = ran l [fp?g We can seethat Wi LEnteri vDS LEnter , but since LEnter is not the weakest re�nement ofSEnter the calculated tests contain additional tests not included in the concreteoperation.However, in this case we can construct an exact covering by taking the in-dividual tests to be LEnteri ^ LEnter . Indeed this is a general strategy whichworks whenever the concrete operation has failed to be the weakest re�nementbecause it has resolved more non-determinism than formally necessary. 2Note that from this example we can see that after calculating the concretetests, further partition analysis might be necessary to put them into DNF.So much for coverage, what about disjointness? For a functional surjectiveretrieve relation disjoint abstract tests will generate disjoint concrete tests.Theorem 3. Let fAOpigi be disjoint test cases, Ret a functional surjective re-trieve relation and fCOpigi calculated from fAOpigi . Then fCOpigi are dis-joint.ProofSuppose that fCOpigi were not disjoint. Then for some i and j9Cstate; Cstate 0 � COpi ^ COpjThus there exists states Cstate and Cstate 0 for which9Astate; Astate 0 � Ret ^ AOpi ^Ret 0; and9Astate; Astate 0 � Ret ^ AOpj ^ Ret 0For these states Cstate and Cstate 0, there are unique statesAstate and Astate 0 such that Ret ^ Ret 0. Therefore9Astate; Astate 0 � AOpi ^ AOpjand so fAOpigi are not disjoint. 2

Note that disjointness is not the same as inequality (two tests with falsepredicates are considered disjoint).Example 2. Re�ned tests are disjoint.If we consider the operation KArrive in the Kurbel box o�ce and its set oftests fKAtgt2kpool . These are disjoint and we produce a set of disjoint concretetests MAt�Marlowename? : Namet ! : Ticketname? 2 dom tktt ! = t = tkt(name?)tkt 0 = fname?g �C tktmpool 0 = mpoolAll but one of these tests are false (tkt is a function, so tkt(name?) must be aunique t). Therefore the set of concrete tests fMAtg reduces to the single testMArrive. 24.2 General Retrieve RelationWe now consider the general case. Recall that to generate tests from abstracttest cases fAOpigi we can still use the simpli�ed formulaCOpi b= 9Astate; Astate 0 � Ret ^AOpi ^ Ret 0Therefore in this general case the covering theorem still holds. However, disjoint-ness in general fails as the proof needed functionality of the retrieve relation. Thiscan be seen from the following example.Example 3. Re�ned tests are not disjoint in general.Consider the two speci�cations which describe sta� entering and leaving the boxo�ce. Suppose that we modify the second speci�cation so that LEnter is nowLEnter�LSystemp? : Sta�#l < maxentryp? 62 ran lran l 0 = ran l [fp?g

SSystem is now a re�nement of this speci�cation with the same retrieve relationas before. However, viewed this way round the retrieve relation is not functional:each set s has many (abstract) representations as a list with s = ran l .The DNF for LEnter contains many tests (one for each permutation of l withp? inserted into it); for example, two such tests would beLEnter1�LSystemp? : Sta�#l < maxentryp? 62 ran ll 0 = l a hp?i
LEnter2�LSystemp? : Sta�#l < maxentryp? 62 ran ll 0 = hp?i a lCalculating the re�ned tests for each one of these abstract tests producesSEnter�SSystemp? : Sta�#s < maxentryp? 62 ss 0 = s [fp?gin every case. So all the abstract tests were mapped onto the same concrete test,which are therefore not disjoint. 25 Re�ning Tests 2: Upward SimulationsSome valid re�nements can not be proved correct with a downwards simulation,and for these we need to use an upwards simulation. An example of this wasprovided above where we commented that the Kurbel box o�ce was a re�ne-ment of the Marlowe box o�ce, but this could only be veri�ed using an upwardsimulation (see [22] for details). The previous section has discussed how to de-rive tests from re�nements which were downward simulations, we now do thesame for upward simulations, and to do so we will need to derive a method forcalculating the weakest upward simulation of an abstract operation.Let us �rst, however, comment upon the partitioning. We found that re�ninga speci�cation doesn't create a super-set of the partitions of the previous levelfor re�nements that were downward simulations. The same can be seen to betrue for re�nements that are upward simulations. From the table of tests for theKurbel and Marlowe speci�cations given at the start of Section 4 we �nd thatunder an upward simulation, one abstract test (MArrive) becomes #kpool tests(KAt) upon re�nement, and a collection of #mpool tests (MBt) become one.There is thus, in general, no relationship between the size of the partitioningbefore and after re�nement for both upward and downward simulations.We will now turn to the problem of calculating the weakest upward simula-tion, which will allow us to derive concrete tests from abstract ones.

5.1 Calculating Upward SimulationsThe methodology given in [13, 22] calculates the most general downward simu-lation of an abstract operation with respect to a retrieve relation between theabstract and concrete state spaces. We do the same here for upward simulations.In a manner similar to downward simulations, the re�nement rules for upwardsimulations simplify considerably for a retrieve relation which is a total functionfrom concrete to abstract. In this case it is easy to show that the correctnesscondition US.28Astate 0; Cstate; Cstate 0 �(8Astate � Ret =) preAOp) =) (COp ^Ret 0 =) 9Astate � Ret ^ AOp)reduces to8Cstate; Cstate 0 � (8Astate � Ret =) preAOp) ^(COp =) 9Astate; Astate 0 � Ret ^ AOp ^ Ret 0)Then, if the retrieve relation is additionally surjective, the weakest re�nementof AOp will again be given byCOp b= 9Astate; Astate 0 � Ret ^ AOp ^ Ret 0a formula that is identical to the downward simulation case.Turning to the general situation (i.e. an arbitrary retrieve relation), the fol-lowing will de�ne the weakest re�nement of AOpCOp b=(8Astate � Ret =) preAOp) ^ 8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOp)For an arbitrary relation R we would still have to check applicability8Cstate � (8Astate � R =) preAOp) =) preCOpHowever, if we know that the retrieve relation does indeed de�ne an upwardsimulation it is not necessary to check this.Theorem 4. Let us denote an upward simulation by vUS . Suppose that AOpspeci�es an operation over the abstract state space Astate. Let Cstate be a con-crete state space, and Ret a retrieve relation between concrete and abstract. LetCOp be de�ned as above. Then for every operation XAOp vUS X i� (8Astate � Ret =) preAOp) =) preCOp and COp vUS XProofTo show that the above de�nition of COp does re�ne AOp we need to show that8Astate 0; Cstate; Cstate 0 �(8Astate � Ret =) preAOp) =) (COp ^ Ret 0 =) 9Astate � Ret ^ AOp)

which reduces to showing that8Astate 0; Cstate; Cstate 0 �(Ret 0 =) 9Astate � Ret ^ AOp) ^ Ret 0 =) (Ret 0 =) 9Astate � Ret ^ AOp)which can easily seen to be true.To show that COp de�nes the most general re�nement of AOp, let us supposethat in addition AOp vUS X , we will show that COp vUS X . Furthermore, letus suppose that the re�nement AOp vUS COp is veri�ed by a retrieve relationR1 and that of AOp vUS X by a retrieve relation R2. Let us denote the statespace of COp by C1 and that of X by C2. We abbreviate Astate to A.We �rst consider applicability. We know that8C2 � (8A � R2 =) preAOp) =) preX (�)8C1 � (8A � R1 =) preAOp) =) preCOp (�)and we need to show that for some retrieve relation R8C2 � (8C1 � R =) preCOp) =) preXFirst let us de�ne R as 9A � R1^R2. Now suppose that for a given concrete stateC2, (8C1 � R =) preCOp) holds. First note that if C2 is not in the domain ofR2, then by �, preX holds at that state. Next suppose that C2 2 domR2 and(C2;C1) 62 R, and consider a state A then (C2;A) 2 R2 implies that (A;C1) 62R1. Then by �, � and the de�nition of COp, preX holds at state C2. The casewhen (C2;C1) 2 R is similar.To show correctness holds, we have to show that (see �gure below)8C2 � (8C1 � R =) preCOp) =) 8C 01; C 02 � (X ^ R0 =) 9C1 � R ^ COp)given that we know8C2 � (8A � R2 =) preAOp) =) 8A0; C 02 � (X ^ R02 =) 9A � R2 ^ AOp)Given that (8C1 � R =) preCOp) implies that (8A � R2 =) preAOp), bycorrectness of AOp vUS X we have8A0; C 02 � (X ^ R02 =) 9A � R2 ^ AOp)Now suppose that given any C 01; C 02, X ^R0 implies that 9C1 � R ^ COp. Nowif X ^ R0 then there exists A0 with (C2;C 02) 2 X , (C 02;A0) 2 R2, (A0;C 01) 2 R1.Thus there exists A with AOp ^ R2. By de�nition of COp there exists C1 with(C1;C 01) 2 COp and (A;C1) 2 R. That is 9C1 � R ^ COp as required.

A A’

C’

C’

AOp

X

COp

R’

R’

R

R 2

1

1

2

2

1

1

2
C

C

25.2 Generating TestsThe preceding theorem means that to generate concrete tests from the abstracttest cases fAOpigi we can use the formulaCOpi b=(8Astate � Ret =) preAOpi) ^ 8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOpi)Since we know that Ret de�nes a re�nement (no need to check applicability),each COpi is a re�nement of AOpi .Example 4. Calculating concrete tests from an upward simulation.Considering the Kurbel speci�cation as an upward simulation of the Mar-lowe speci�cation we can generate test cases for the Kurbel operations from theabstract test cases of the Marlowe operations. Considered in this direction theretrieve relation is not functional, so we have to use the general formulae givenabove.Calculation shows that the abstract MArrive test case produces a number ofconcrete test cases fKAtgt , one for each t 2 kpool . Similarly, we can calculateconcrete tests for the book operation via its test cases fMBtgt , upon re�nementthese produce one concrete test KBook for the Kurbel speci�cation. 2Having shown how to calculate tests we now consider their properties ofcoverage and disjointness in turn.We begin with coverage, where we have the following result.Theorem 5. Let AOp be an abstract operation with AOp = Wi AOpi being itsdisjoint set of tests. Let COp be an upward simulation of AOp. Let Ret be theretrieve relation. Let COpi be the concrete tests given above. ThenWi COpi vUS COpand if COp is the weakest upward simulation of AOp then COp = Wi COpi .

ProofLet us �rst observe the following:Wi COpi= Wi ((8Astate � Ret =) preAOpi) ^8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOpi))=) Wi (8Astate � Ret =) preAOpi) ^Wi(8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOpi))=) (8Astate � Wi(Ret =) preAOpi)) ^(8Astate 0 � Wi (Ret 0 =) 9Astate � Ret ^ AOpi))= (8Astate � (Ret =) Wi preAOpi)) ^(8Astate 0 � Ret 0 =) Wi(9Astate � Ret ^ AOpi))= (8Astate � (Ret =) preWi AOpi)) ^(8Astate 0 � Ret 0 =) (9Astate � Ret ^Wi AOpi))vUS COpThereforeWi COpi vUS COpIf COp was in fact the weakest re�nement of AOp then we need to show thatequality holds between COp and Wi COpi . This will follow from the fact that(8Astate � (Ret =) preWi AOpi)) ^(8Astate 0 � Ret 0 =) (9Astate � Ret ^Wi AOpi))vUS Wi COpiwhich is easily shown. 2Therefore the covering properties for upward simulations are the same as fordownward simulations.The disjointness properties are also pleasingly symmetric. When the retrieverelation is a surjective function, the formulae for calculating tests is the sameas for downward simulations. Therefore, as was the case then, disjoint abstractdisjoint tests will produce disjoint concrete tests. However, in general we again�nd that re�ned tests are not disjoint.Example 5. Re�ned tests are not disjoint in general.To see this it su�ces to consider again the re�nement of the Marlowe speci�ca-tion. The retrieve relation is not functional, since the predicates in Ret do notde�ne the abstract space uniquely (in particular, kpool = mpool [ran tkt allowsmany choices of mpool and tkt for a given kpool).Each abstract test (MBt) of MBook (and there are #mpool of them) ismapped onto the same concrete test (KBook). Therefore the re�ned concretetests are not disjoint whereas the abstract ones were. 2

6 ConclusionsWe have provided a means to calculate concrete tests from abstract ones for bothupward and downward simulations. For retrieve relations which are surjectivefunctions the calculations simpli�ed considerably, and in this case the formulaefor upward and downward simulations coincide.We can use this as a basis for a methodology to determine the correct concretetest calculation. Given abstract and concrete state spaces, a retrieve relation andan abstract operation, we proceed as follows:1. Determine whether Ret is a surjective function. If it is, then the concretetests are given byCOpi b= 9Astate; Astate 0 � Ret ^ AOpi ^ Ret 02. If Ret is not a surjective function we determine whether it de�nes a downwardor upward simulation. We do this by determining ifpreAOp ^ Ret) preCOpIf this is the case, then the re�nement is a downward simulation, and there-fore the concrete tests are still given byCOpi b= 9Astate; Astate 0 � Ret ^ AOpi ^ Ret 03. If Ret does not de�ne a downward simulation, then the re�nement must bean upward simulation. In this case the concrete tests are given byCOpi b= (8Astate � Ret =) preAOpi) ^8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOpi)4. In all cases, check whether COp was in fact the weakest re�nement, we dothis by determining ifWi COpi = COpIf this is the case then the set of covering test cases is fCOpigi , if not wemay wish to restrict the set of concrete tests further by taking the tests tobe fCOpi ^ COpgi .Since re�ning AOp might weaken its precondition, note that it may be nec-essary to perform further partition analysis in order to place the concrete testsinto DNF.If COp is the weakest re�nement of AOp then the set of tests fCOpigi coverCOp. If Ret is functional then the concrete tests will be disjoint whenever theabstract tests are disjoint.In this paper we have just considered the partition analysis for the individualoperations to produce a number of test cases derived by conversion of an opera-tion into disjunctive normal form. Further work on this methodology would also

consider the partition analysis of the system state and the scheduling of tests tosee how these change under re�nement.The partition analysis of the system state again transforms the state intoa disjunctive normal form, which is then used to construct a �nite state au-tomaton from the speci�cation. The state space changes under re�nement anda new partition will be obtained for the concrete state space. We would expectthat re�nements have a similar e�ect on the state space to those found for thepartition analysis of the operations. This needs to be con�rmed.In addition, we would like to determine whether we can use the retrieverelation to calculate a new FSA for the concrete speci�cation from the abstractone using similar techniques to those above. The scheduling of tests for theconcrete speci�cation, which involves �nding paths through the FSA which coverall the required tests, would also have to be investigated in light of our discussionof re�nement.References[1] J. R. Abrial. The B-Book: Assigning programs to meanings. CUP, 1996.[2] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sab-nani, editors, Protocol Speci�cation, Testing and Veri�cation, VIII, pages 63{74,Atlantic City, USA, June 1988. North-Holland.[3] E. Brinksma, G. Scollo, and C. Steenbergen. Process speci�cation, their imple-mentation and their tests. In B. Sarikaya and G. v. Bochmann, editors, Proto-col Speci�cation, Testing and Veri�cation, VI, pages 349{360, Montreal, Canada,June 1986. North-Holland.[4] D. Carrington and P. Stocks. A tale of two paradigms: Formal methods andsoftware testing. In J.P. Bowen and J.A. Hall, editors, ZUM'94, Z User Workshop,pages 51{68, Cambridge, United Kingdom, June 1994.[5] E. Cusack and C. Wezeman. Deriving tests for objects speci�ed in Z. In J. P.Bowen and J. E. Nicholls, editors, Seventh Annual Z User Workshop, pages 180{195, London, December 1992. Springer-Verlag.[6] R. de Nicola and M. Hennessy. Testing equivalences for processes. TheoreticalComputer Science, 34(3):83{133, 1984.[7] J. Derrick and E.A. Boiten. Calculating and verifying re�nements of state basedspeci�cations. 1998. Submitted of publication.[8] Jeremy Dick and Alain Faivre. Automating the generation and sequencing of testcases from model-based speci�cations. In J. C. P. Woodcock and P. G. Larsen, ed-itors, FME'93: Industrial-Strength Formal Methods, pages 268{284. Formal Meth-ods Europe, Springer-Verlag, April 1993. Lecture Notes in Computer Science 670.[9] J. He. Process re�nement. In J. McDermid, editor, The Theory and Practice ofRe�nement. Butterworths, 1989.[10] L. Heerink and J. Tretmans. Refusal testing for classes of transition systems withinputs and outputs. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,editors, FORTE/PSTV XVII'97. Chapman and Hall, November 1997.[11] H-M. Horcher. Improving software tests using Z speci�cations. In J. P. Bowenand M. G. Hinchey, editors, Ninth Annual Z User Workshop, LNCS 967, pages152{166, Limerick, September 1995. Springer-Verlag.[12] C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 1989.

[13] M. B. Josephs. The data re�nement calculator for Z speci�cations. InformationProcessing Letters, 27:29{33, February 1988.[14] G.T. Scullard. Test case selection using VDM. In VDM '88 VDM { The WayAhead, pages 178{186, September 1988.[15] H. Singh, M. Conrad, and S. Sadeghipour. Test case design based on Z and theclassi�cation-tree method. In M. Hinchey and Shaoying Liu, editors, First IEEEInternational Conference on Formal Engineering Methods (ICFEM '97), pages81{90, Hiroshima, Japan, November 1997. IEEE Computer Society.[16] G. Smith and J. Derrick. Re�nement and veri�cation of concurrent systems spec-i�ed in Object-Z and CSP. In M. Hinchey and Shaoying Liu, editors, First IEEEInternational Conference on Formal Engineering Methods (ICFEM '97), pages293{302, Hiroshima, Japan, November 1997. IEEE Computer Society.[17] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.[18] S. Stepney. Testing as Abstraction. In J. P. Bowen and M. G. Hinchey, editors,Ninth Annual Z User Workshop, LNCS 967, pages 137{151, Limerick, September1995. Springer-Verlag.[19] P. Stocks and D. Carrington. Deriving software test cases from formal speci�ca-tions. In 6th Australian Software Engineering Conference, pages 327{340, July1991.[20] L. van Aertryck, M. Benveniste, and D. Le Metayer. Casting: a formally basedsoftware test generation method. In M. Hinchey and Shaoying Liu, editors, FirstIEEE International Conference on Formal Engineering Methods (ICFEM '97),pages 101{110, Hiroshima, Japan, November 1997. IEEE Computer Society.[21] C. Wezeman and A. J. Judge. Z for managed objects. In J. P. Bowen and J. A.Hall, editors, Eighth Annual Z User Workshop, pages 108{119, Cambridge, July1994. Springer-Verlag.[22] J. Woodcock and J. Davies. Using Z: Speci�cation, Re�nement, and Proof. Pren-tice Hall, 1996.[23] J. C. P. Woodcock and C. C. Morgan. Re�nement of state-based concurrentsystems. In D. Bjorner, C. A. R. Hoare, and H. Langmaack, editors, VDM '90VDM and Z - Formal Methods in Software Development, LNCS 428, pages 340{351, Kiel, FRG, April 1990. Springer-Verlag.

