81 research outputs found

    Integrated high-resolution physical and comparative gene maps in horses

    Get PDF
    High-resolution physically ordered gene maps for the horse (Equus caballus, ECA) are essential to the identification of genes associated with hereditary diseases and traits of interest like fertility, coat color, and disease resistance or susceptibility. Such maps also serve as foundations for genome comparisons across species and form the basis to study chromosome evolution. In this study seven equine chromosomes (ECA6, 7, 10, 15, 18, 21 and X) corresponding to human chromosomes (HSA) 2, 19 and X were selected for high-resolution mapping on the basis of their potential involvement in diseases and conditions of importance to horses. To accomplish this, gene- and sequence-specific markers were generated and genotyped on the TAMU 5000rad horse x hamster RH panel. Additionally, screening of a BAC library by overgoes and subsequent STS content mapping and fingerprinting approaches were used to assemble and verify a BAC contig along a ~5 Mb span on ECA21. Dense gene maps were generated for each of the seven equine chromosomes by adding 408 new markers (285 type I and 123 type II) to the current maps of these chromosomes, thereby greatly improving overall map resolution to one mapped marker every 960kb on average (range: 700 kb ñ 1.3 Mb). Moreover, the contig on ECA21 contained 47 markers (42 genes and 5 microsatellites) as well as 106 STS markers distributed along 207 BAC clones. Comparisons of these maps with other species revealed a remarkably high level of horse-human X chromosome conservation, as well as two evolutionary breakpoints unique to Perissodactyls or Equids for the equine homologues of HSA19 and HSA2, one of which has been more precisely localized by the ECA21 contig. Thus, high resolution maps developed for these chromosomes i) provide a basis to map traits of interest rapidly to specific chromosomal regions, ii) facilitate searches for candidate genes for these traits by fine comparisons of the equine regions with corresponding segments in other species, and iii) enable understanding the evolution of the chromosomes. Expansion of this work to the entire equine genome will be important for developing novel strategies for diagnosis, prevention, and treatment of equine diseases

    Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains

    Get PDF
    Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases

    Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy

    Get PDF
    BACKGROUND: Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. RESULTS: We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. CONCLUSIONS: The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2948-z) contains supplementary material, which is available to authorized users

    A high resolution RH map of the bovine major histocompatibility complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cattle MHC is termed the bovine leukocyte antigen (BoLA) and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0) that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000<sub>rad </sub>radiation hybrid panel. Seventy-seven unique sequence tagged site (STS) markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000<sub>rad </sub>bovine radiation hybrid (RH) panel to evaluate the different assemblies of the bovine genome sequence.</p> <p>Results</p> <p>Analysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36) when reordered to account for the ancestral inversion in the ruminant MHC.</p> <p>Conclusion</p> <p>These results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.</p

    A criança asmåtica: Relação e terreno alérgico.

    Get PDF
    Relata-se o caso clínico de uma criança com asma alérgica. Efectua-se uma abordagem compreensiva através do modelo multidimensional de somatização proposto por Sami-Ali.ABSTRACT: Clinical report on a case study of a child with a psychosomatic disorder: bronquial asthma. The main focus of this paper is on an approach based on the Sami-Ali's somatization multidimensional model.info:eu-repo/semantics/publishedVersio

    Determination of qPCR Reference Genes Suitable for Normalizing Gene Expression in a Canine Model of Duchenne Muscular Dystrophy

    Get PDF
    Background:Dogs with dystrophin-deficient muscular dystrophy are valuable models of the equivalent human disease, Duchenne Muscular Dystrophy (DMD): unlike the mdx mouse, these animals present a disease severity and progression that closely matches that found in human patients. Canine models are however less thoroughly characterised than the established mdx mouse in many aspects, including gene expression. Analysis of expression in muscle plays a key role in the study of DMD, allowing monitoring and assessment of disease progression, evaluation of novel biomarkers and gauging of therapeutic intervention efficacy. Appropriate normalization of expression data via carefully selected reference genes is consequently essential for accurate quantitative assessment. Unlike the expression profile of healthy skeletal muscle, the dystrophic muscle environment is highly dynamic: transcriptional profiles of dystrophic muscle might alter with age, disease progression, disease severity, genetic background and between muscle groups. Objectives:The aim of this work was to identify reference genes suitable for normalizing gene expression in healthy and dystrophic dogs under various comparative scenarios. Methods:Using the delta-E50 MD canine model of DMD, we assessed a panel of candidate reference genes for stability of expression across healthy and dystrophic animals, at different ages and in different muscle groups. Results:We show that the genes HPRT1, SDHA and RPL13a appear universally suitable for normalizing gene expression in healthy and dystrophic canine muscle, while other putative reference genes are exceptionally poor, and in the case of B2M, actively disease-correlated. Conclusions:Our findings suggest consistent cross-sample normalization is possible even throughout the dynamic progression of dystrophic pathology, and furthermore highlight the importance of empirical determination of suitable reference genes for neuromuscular diseases

    Whole genome sequencing reveals a 7 base-pair deletion in DMD exon 42 in a dog with muscular dystrophy

    Get PDF
    Dystrophin is a key cytoskeletal protein coded by the Duchenne muscular dystrophy (DMD) gene located on the X-chromosome. Truncating mutations in the DMD gene cause loss of dystrophin and the classical DMD clinical syndrome. Spontaneous DMD gene mutations and associated phenotypes occur in several other species. The mdx mouse model and the golden retriever muscular dystrophy (GRMD) canine model have been used extensively to study DMD disease pathogenesis and show efficacy and side effects of putative treatments. Certain DMD gene mutations in high-risk, the so-called hot spot areas can be particularly helpful in modeling molecular therapies. Identification of specific mutations has been greatly enhanced by new genomic methods. Whole genome, next generation sequencing (WGS) has been recently used to define DMD patient mutations, but has not been used in dystrophic dogs. A dystrophin-deficient Cavalier King Charles Spaniel (CKCS) dog was evaluated at the functional, histopathological, biochemical, and molecular level. The affected dog’s phenotype was compared to the previously reported canine dystrophinopathies. WGS was then used to detect a 7 base pair deletion in DMD exon 42 (c.6051-6057delTCTCAAT mRNA), predicting a frameshift in gene transcription and truncation of dystrophin protein translation. The deletion was confirmed with conventional PCR and Sanger sequencing. This mutation is in a secondary DMD gene hotspot area distinct from the one identified earlier at the 5â€Č donor splice site of intron 50 in the CKCS breed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00335-016-9675-2) contains supplementary material, which is available to authorized users

    Assignment of chromosomal locations for unassigned SNPs/scaffolds based on pair-wise linkage disequilibrium estimates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments of high-density SNP chips across a number of species require accurate genetic maps. Despite rapid advances in genome sequence assembly and availability of a number of tools for creating genetic maps, the exact genome location for a number of SNPs from these SNP chips still remains unknown. We have developed a locus ordering procedure based on linkage disequilibrium (LODE) which provides estimation of the chromosomal positions of unaligned SNPs and scaffolds. It also provides an alternative means for verification of genetic maps. We exemplified LODE in cattle.</p> <p>Results</p> <p>The utility of the LODE procedure was demonstrated using data from 1,943 bulls genotyped for 73,569 SNPs across three different SNP chips. First, the utility of the procedure was tested by analysing the masked positions of 1,500 randomly-chosen SNPs with known locations (50 from each chromosome), representing three classes of minor allele frequencies (MAF), namely >0.05, 0.01<MAF ≀ 0.05 and 0.001<MAF ≀ 0.01. The efficiency (percentage of masked SNPs that could be assigned a location) was 96.7%, 30.6% and 2.0%; with an accuracy (the percentage of SNPs assigned correctly) of 99.9%, 98.9% and 33.3% in the three classes of MAF, respectively. The average precision for placement of the SNPs was 914, 3,137 and 6,853 kb, respectively. Secondly, 4,688 of 5,314 SNPs unpositioned in the Btau4.0 assembly were positioned using the LODE procedure. Based on these results, the positions of 485 unordered scaffolds were determined. The procedure was also used to validate the genome positions of 53,068 SNPs placed on Btau4.0 bovine assembly, resulting in identification of problem areas in the assembly. Finally, the accuracy of the LODE procedure was independently validated by comparative mapping on the hg18 human assembly.</p> <p>Conclusion</p> <p>The LODE procedure described in this study is an efficient and accurate method for positioning SNPs (MAF>0.05), for validating and checking the quality of a genome assembly, and offers a means for positioning of unordered scaffolds containing SNPs. The LODE procedure will be helpful in refining genome sequence assemblies, especially those being created from next-generation sequencing where high-throughput SNP discovery and genotyping platforms are integrated components of genome analysis.</p

    Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures

    Get PDF
    Abstract Background Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. Methods To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn +/−) whippets. A total of four GRippets (dystrophic and Mstn +/−), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Results Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no differential expression between GRMD and GRippet dogs. Satellite cell exhaustion was not observed in GRippets up to 3 years of age. Conclusions Partial myostatin loss may exaggerate selective muscle hypertrophy or atrophy/hypoplasia in GRMD dogs and worsen contractures. While muscle imbalance is not a feature of myostatin inhibition in mdx mice, findings in a larger animal model could translate to human experience with myostatin inhibitors
    • 

    corecore