323 research outputs found
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
It is with great pleasure that we introduce palsys.org (https://palsys.org/genus/, last access: 8 December 2023), a fully open-access taxonomic, stratigraphic and image database of organic-walled dinoflagellate cysts. Palsys.org started as the in-house database of the Laboratory of Palaeobotany and Palynology (LPP) Foundation over 30 years ago. It is now owned by Utrecht University and has been expanded and transformed into a public online platform for use in research and education. Palsys.org includes the taxonomic descriptions of genera and species of organic walled dinoflagellate cysts, from the (often translated) literature, and emendations and synonymy, mainly following Williams et al. (2017) and the stratigraphic calibrations from DINOSTRAT (Bijl, 2022), and has around 25ĝ€¯000 images of species. Here, in this launch paper, we explain the history of the database, present its current functionalities and explain our set-up of the data quality control. We call upon the community to help us keep palsys.org up to date and complete by, for example, by sending additional information, imagery and feedback in general through the platform. Palsys.org brings dinoflagellate micropaleontology in line with the open-science principles of modern academia
Eocene Circulation Of The Southern Ocean: Was Antarctica Kept Warm By Subtropical Waters?
Near the Eocene\u27s close (∼34 million years ago), the climate system underwent one of the largest shifts in Earth\u27s history: Antarctic terrestrial ice sheets suddenly grew and ocean productivity patterns changed. Previous studies conjectured that poleward penetration of warm, subtropical currents, the East Australian Current (EAC) in particular, caused Eocene Antarctic warmth. Late Eocene opening of an ocean gateway between Australia and Antarctica was conjectured to have disrupted the EAC, cooled Antarctica, and allowed ice sheets to develop. Here we reconstruct Eocene paleoceanographic circulation in the Tasmanian region, using (1) biogeographical distributions of phytoplankton, including data from recently drilled Ocean Drilling Program Leg 189 sites and (2) fully coupled climate model simulations. We find that the EAC did not penetrate to high latitudes and ocean heat transport in the region was not greater than modern. Our results do not support changes in “thermal isolation” as the primary driver of the Eocene-Oligocene climatic transition
Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)
International audienceA vast shallow epicontinental sea extended across Eurasia and was well-connected to the Western Tethys before it retreated westward and became isolated as the Paratethys Sea. However, the palaeogeography and the timing of this westward retreat are too poorly constrained to determine potential wider environmental impacts, let alone understanding underlying mechanisms of the retreat such as global eustasy and tectonism associated with the Indo-Asia collision. Here, an improved chronostratigraphic and palaeogeographic framework is provided for the onset of the proto-Paratethys Sea retreat at its easternmost extent in the Tarim Basin in western China is provided. Five different third-order sea-level cycles can be recognised from the Cretaceous-Palaeogene sedimentary record in the Tarim Basin, of which the last two stepped successively westwards as the sea retreated after the maximum third incursion. New biostratigraphic data from the fourth and fifth incursions at the westernmost margin of the Tarim Basin are compared to our recent integrated bio-magneto-stratigraphic results on the fourth incursion near the palaeodepocentre in the south-western part of the basin. While the fourth incursion extended throughout the basin and retreated at ~ 41 Ma (base C18r), the last and fifth incursion is restricted to the westernmost margin and its marine deposits are assigned a latest Bartonian-early Priabonian age from ~ 38.0 to ~ 36.7 Ma (near top C17n.2n to base C16n.2n). Similar to the fourth, the fossil assemblages of the fifth incursion are indicative of shallow marine, near-shore conditions and their widespread distribution across Eurasia suggests that the marine connection to the Western Tethys was maintained. The lack of diachronicity of the fourth incursion between the studied sections across the southwest Tarim Basin suggests that the sea entered and withdrew relatively rapidly, as can be expected in the case of eustatic control on a shallow epicontinental basin. However, the westward palaeogeographic step between the fourth and fifth incursions separated by several millions of years rather suggests the combined long-term effect of tectonism, possibly associated with early uplift of the Pamir-Kunlun Shan thrust belt. The fourth and fifth regressions are time-equivalent with significant aridification steps recorded in the Asian interior, thus supporting climate modelling results showing that the stepwise sea retreat from Central Asia amplified the aridification of the Asian interior
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Eocene transient global warming events (hyperthermals) can provide insight into a future warmer world. While much research has focused on the Paleocene-Eocene Thermal Maximum (PETM), hyperthermals of a smaller magnitude can be used to characterize climatic responses over different magnitudes of forcing. This study identifies two events, namely the Eocene Thermal Maximum 2 (ETM2 and H2), in shallow marine sediments of the Eocene-aged Salisbury Embayment of Maryland, based on magnetostratigraphy, calcareous nannofossil, and dinocyst biostratigraphy, as well as the recognition of negative stable carbon isotope excursions (CIEs) in biogenic calcite. We assess local environmental change in the Salisbury Embayment, utilizing clay mineralogy, marine palynology, δ18O of biogenic calcite, and biomarker paleothermometry (TEX86). Paleotemperature proxies show broad agreement between surface water and bottom water temperature changes. However, the timing of the warming does not correspond to the CIE of the ETM2 as expected from other records, and the highest values are observed during H2, suggesting factors in addition to pCO2 forcing have influenced temperature changes in the region. The ETM2 interval exhibits a shift in clay mineralogy from smectite-dominated facies to illite-rich facies, suggesting hydroclimatic changes but with a rather dampened weathering response relative to that of the PETM in the same region. Organic walled dinoflagellate cyst assemblages show large fluctuations throughout the studied section, none of which seem systematically related to CIE warming. These observations are contrary to the typical tight correspondence between climate change and assemblages across the PETM, regionally and globally, and ETM2 in the Arctic Ocean. The data do indicate very warm and (seasonally) stratified conditions, likely salinity-driven, across H2. The absence of evidence for strong perturbations in local hydrology and nutrient supply during ETM2 and H2, compared to the PETM, is consistent with the less extreme forcing and the warmer pre-event baseline, as well as the non-linear response in hydroclimates to greenhouse forcing
Recommended from our members
The Paleocene/Eocene boundary Global Standard Stratotype-section and Point (GSSP): Criteria for Characterisation and Correlation
The choice of a Paleocene/Eocene (P/E) Global Standard Stratotype-section and Point (GSSP) is complicated by the fact that there exists confusion on the exact denotation of the Paleocene and Eocene Series and their constituent lower rank (stage) units. While we can now resolve this problem by recourse to rigorous historical analysis, actual placement of the GSSP is further exacerbated by an embarrassment of riches (in regards to 7 criteria suitable for characterising and correlating a PIE GSSP but which span a temporal interval of greater than 2 my).
Following the precept that the boundaries between higher level chronostratigraphic units are to be founded upon the boundaries of their lowest constituent stages in a nested hierarchy, we note that one of the criteria providing global correlation potential (a stable isotope excursion in marine and terrestrial stratigraphies) lies at a stratigraphic level more than !my older than the base of the stratotypic Ypresian Stage to which the base of the Eocene Series has been subordinated until now. Lowering a chronostratigraphic unit by this extent risks a significant modification to the original geohistorical denotation of the Ypresian Stage and the Eocene Series.
We discuss here four options that are open to Voting Members of the Paleogene Subcommission. One solution consists in adjusting slightly the base of the Ypresian Stage (and, thus, the Eocene Series) so as to be correlatable on the basis of the lowest occurrence/First Appearance Datum (LO/FAD) of the calcareous nannofossil species Tribrachiatus.digitalis. Another solution would be to decouple series and stages so that the Ypresian Stage remains essentially unaltered but the base of tbe Eocene is relocated so as to be correlated on the basis of the Carbon Isotope Excursion (CIE).
Two (compromise) solutions consist in erecting a new stage for the upper/terminal Paleocene (between the Thanetian [sensu Dollfus] and Ypresian Stages) characterised at its base by the global stable isotope excursion. The P/E GSSP may then be placed at the base of the stratotypic Ypresian Stage (thus preserving historical continuity and conceptual denotation and stability) or at the base of the newly erected stage (facilitating correlation of the base of the Eocene series, at least in principle). Both GSSPs should be placed in suitable marine stratigraphic sections yet to be determined but upon which there is considerable current investigative activity
Timing and Nature of the Deepening of the Tasmanian Gateway
Tectonic changes that produced a deep Tasmanian Gateway between Australia and Antarctica are widely invoked as the major mechanism for Antarctic cryosphere growth and Antarctic Circumpolar Current (ACC) development during the Eocene/Oligocene (E/O) transition (∼34–33 Ma). Ocean Drilling Program (ODP) Leg 189 recovered near-continuous marine sedimentary records across the E/O transition interval at four sites around Tasmania. These records are largely barren of calcareous microfossils but contain a rich record of siliceous- and organic-walled marine microfossils. In this study we integrate micropaleontological, sedimentological, geochemical, and paleomagnetic data from Site 1172 (East Tasman Plateau) to identify four distinct phases (A–D) in the E/O Tasmanian Gateway deepening that are correlative among ODP Leg 189 sites. Phase A, prior to ∼35.5 Ma: minor initial deepening characterized by a shallow marine prodeltaic setting with initial condensation episodes. Phase B, ∼35.5–33.5 Ma: increased deepening marked by the onset of major glauconitic deposition and inception of energetic bottom-water currents. Phase C, ∼33.5–30.2 Ma: further deepening to bathyal depths, with episodic erosion by increasingly energetic bottom-water currents. Phase D, \u3c30.2 Ma: establishment of stable, open-ocean, warm-temperate, oligotrophic settings characterized by siliceous-carbonate ooze deposition. Our combined evidence indicates that this early Oligocene Tasmanian Gateway deepening initially produced an eastward flow of relatively warm surface waters from the Australo-Antarctic Gulf into the southwestern Pacific Ocean. This “proto-Leeuwin” current fundamentally differs from previous regional reconstructions of eastward flowing cool water (e.g., a “proto-ACC”) during the early Oligocene and thereby represents an important new constraint for reconstructing regional- to global-scale dynamics for this major global change event
Environmental Forcings of Paleogene Southern Ocean Dinoflagellate Biogeography
Despite warm polar climates and low meridional temperature gradients, a number of different high-latitude plankton assemblages were, to varying extents, dominated by endemic species during most of the Paleogene. To better understand the evolution of Paleogene plankton endemism in the high southern latitudes, we investigate the spatiotemporal distribution of the fossil remains of dinoflagellates, i.e., organic-walled cysts (dinocysts), and their response to changes in regional sea surface temperature (SST). We show that Paleocene and early Eocene (∼65–50 Ma) Southern Ocean dinocyst assemblages were largely cosmopolitan in nature but that a distinct switch from cosmopolitan-dominated to endemic-dominated assemblages (the so-called “transantarctic flora”) occurred around the early-middle Eocene boundary (∼50 Ma). The spatial distribution and relative abundance patterns of this transantarctic flora correspond well with surface water circulation patterns as reconstructed through general circulation model experiments throughout the Eocene. We quantitatively compare dinocyst assemblages with previously published TEX86–based SST reconstructions through the early and middle Eocene from a key locality in the southwest Pacific Ocean, ODP Leg 189 Site 1172 on the East Tasman Plateau. We conclude that the middle Eocene onset of the proliferation of the transantarctic flora is not linearly correlated with regional SST records and that only after the transantarctic flora became fully established later in the middle Eocene, possibly triggered by large-scale changes in surface-ocean nutrient availability, were abundances of endemic dinocysts modulated by regional SST variations
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
At present, a strong latitudinal sea-surface-temperature (SST) gradient of g1/4g€¯16g€¯g exists across the Southern Ocean, maintained by the Antarctic Circumpolar Current (ACC) and a set of complex frontal systems. Together with the Antarctic ice masses, this system has formed one of the most important global climate regulators. The timing of the onset of the ACC system, its development towards modern-day strength and the consequences for the latitudinal SST gradient around the southern Atlantic Ocean are still uncertain. Here we present new TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms)-derived SST records from two sites located east of Drake Passage (south-western South Atlantic) to assist in better understanding two critical time intervals of prominent climate transitions during the Cenozoic: the late Eocene-early Oligocene (Ocean Drilling Program, ODP, Site 696) and Middle-Late Miocene (IODP Site U1536) transitions. Our results show temperate conditions (20-11g€¯g) during the first time interval, with a weaker latitudinal SST gradient (g1/4g€¯8g€¯g) across the Atlantic sector of the Southern Ocean compared to present day. We ascribe the similarity in SSTs between Sites 696 and 511 in the late Eocene-early Oligocene South Atlantic to a persistent, strong subpolar gyre circulation connecting the sites, which can only exist in the absence of a strong throughflow across the Drake Passage. Surprisingly, the southern South Atlantic record Site 696 shows comparable SSTs (g1/4g€¯12-14g€¯g) during both the earliest Oligocene oxygen isotope step (EOIS, g1/4g€¯33.65g€¯Ma) and the Miocene Climatic Optimum (MCO, g1/4g€¯16.5g€¯Ma). Apparently, maximum Oligocene Antarctic ice volume could coexist with warm ice-proximal surface ocean conditions, while at similar ocean temperatures, the Middle Miocene Antarctic ice sheet was likely reduced. Only a few Middle-Late Miocene (discontinuous) high-latitude records exist due to ice advances causing unconformities. Our low-resolution Site U1536 record of southern South Atlantic SSTs cooled to g1/4g€¯5g€¯g during the Middle Miocene Climate Transition (MMCT, 14g€¯Ma), making it the coldest oceanic region in the poorly recorded Antarctic realm and likely the main location for deep-water formation. The already-cold south-western South Atlantic conditions at the MMCT with relatively moderate additional cooling during the Late Miocene contrasts with the profound cooling in the lower latitudes and other sectors of the Southern Ocean due to northward expansion of the Southern Ocean frontal systems
- …