128 research outputs found
Physiological augmentation of esophageal distension pressure and peristalsis during conditions of increased esophageal emptying resistance.
This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving'.
© 2017 John Wiley & Sons, Inc. All rights reserved.
This author accepted manuscript is made available following 12 month embargo from date of publication (Nov 2017) in accordance with the publisher’s archiving policyBackground
Abdominal compression has been implemented as a provocative maneuver in high‐resolution impedance manometry (HRIM) to “challenge” normal esophageal physiology with the aim of revealing abnormal motor patterns which may explain symptoms. In this study, we measured the effects of abdominal compression on esophageal functioning utilizing novel pressure‐impedance parameters and attempted to identify differences between healthy controls and globus patients.
Methods
Twenty‐two healthy volunteers (aged 23‐32 years, 41% female) and 22 globus patients (aged 23‐72 years, 68% female) were evaluated with HRIM using a 3.2‐mm water perfused manometric and impedance catheter. All participants received 10 × 5 mL liquid swallows; healthy controls also received 10 × 5 mL liquid swallows with abdominal compression created using an inflatable cuff. All swallows were analyzed to assess esophageal pressure topography (EPT) and pressure‐flow metrics, indicative of distension pressure, flow timing and bolus clearance were derived.
Key Results
The effect of abdominal compression was shown as a greater contractile vigor of the distal esophagus by EPT and higher distension pressure based on pressure‐flow metrics. Age and body mass index also increased contractile vigor and distension pressure. Globus patients were similar to controls.
Conclusions and Interferences
Intrabolus pressure and contractile vigor are indicative of the physiological modulation of bolus transport mechanisms. Provocative testing by abdominal compression induces changes in these esophageal bolus dynamics
FOXL2 and TERT promoter mutation detection in circulating tumor DNA of adult granulosa cell tumors as biomarker for disease monitoring
OBJECTIVE: Adult granulosa cell tumors (aGCTs) represent a rare, hormonally active subtype of ovarian cancer that has a tendency to relapse late and repeatedly. Current serum hormone markers are inaccurate in reflecting tumor burden in a subset of aGCT patients, indicating the need for a novel biomarker. We investigated the presence of circulating tumor DNA (ctDNA) harboring a FOXL2 or TERT promoter mutation in serial plasma samples of aGCT patients to determine its clinical value for monitoring disease. METHODS: In a national multicenter study, plasma samples (n = 110) were prospectively collected from 21 patients with primary (n = 3) or recurrent (n = 18) aGCT harboring a FOXL2 402C > G and/or TERT (C228T or C250T) promoter mutation. Circulating cell-free DNA was extracted and assessed for ctDNA containing one of either mutations using droplet digital PCR (ddPCR). Fractional abundance of FOXL2 mutant and TERT mutant ctDNA was correlated with clinical parameters. RESULTS: FOXL2 mutant ctDNA was found in plasma of 11 out of 14 patients (78.6%) with aGCT with a confirmed FOXL2 mutation. TERT C228T or TERT C250T mutant ctDNA was detected in plasma of 4 of 10 (40%) and 1 of 2 patients, respectively. Both FOXL2 mutant ctDNA and TERT promoter mutant ctDNA levels correlated with disease progression and treatment response in the majority of patients. CONCLUSIONS: FOXL2 mutant ctDNA was present in the majority of aGCT patients and TERT promoter mutant ctDNA has been identified in a smaller subset of patients. Both FOXL2 and TERT mutant ctDNA detection may have clinical value in disease monitoring
Pure spinor superfields and Born-Infeld theory
We present a method for introducing and analysing higher-derivative
deformations of maximally supersymmetric field theories. Such terms are built
in the pure spinor superfield framework, using a set of operators representing
physical fields. The action for abelian Born-Infeld theory becomes polynomial
in this language, and contains only a four-point interaction in addition to the
free action. Simplifications also occur in the non-abelian case.Comment: 23 pp., plain te
Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments
Brain Imaging Studies in Pathological Gambling
This article reviews the neuroimaging research on pathological gambling (PG). Because of the similarities between substance dependence and PG, PG research has used paradigms similar to those used in substance use disorder research, focusing on reward and punishment sensitivity, cue reactivity, impulsivity, and decision making. This review shows that PG is consistently associated with blunted mesolimbic-prefrontal cortex activation to nonspecific rewards, whereas these areas show increased activation when exposed to gambling-related stimuli in cue exposure paradigms. Very little is known, and hence more research is needed regarding the neural underpinnings of impulsivity and decision making in PG. This review concludes with a discussion regarding the challenges and new developments in the field of neurobiological gambling research and comments on their implications for the treatment of PG
Cross-linguistic adaptations of The Comprehensive Aphasia Test: Challenges and solutions
Comparative research on aphasia and aphasia rehabilitation is challenged by the lack of comparable assessment tools across different languages. In English, a large array of tools is available, while in most other languages, the selection is more limited. Importantly, assessment tools are often simple translations and do not take into consideration specific linguistic and psycholinguistic parameters of the target languages. As a first step in meeting the needs for comparable assessment tools, the Comprehensive Aphasia Test is currently being adapted into a number of languages spoken in Europe. In this article, some key challenges encountered in the adaptation process and the solutions to ensure that the resulting assessment tools are linguistically and culturally equivalent, are proposed. Specifically, we focus on challenges and solutions related to the use of imageability, frequency, word length, spelling-to-sound regularity and sentence length and complexity as underlying properties in the selection of the testing material
Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers
Pathological gambling (PG) is associated with maladaptive perseverative behavior, but the underlying mechanism and neural circuitry is not completely clear. Here, the hypothesis was tested that PG is characterized by response perseveration and abnormalities in reward and/or punishment sensitivity in the ventral frontostriatal circuit. Executive functioning was assessed to verify if these effects are independent of the dorsal frontostriatal circuit. A group of smokers was also included to examine whether impairments in PG generalize to substance use disorders. Response perseveration and reward/punishment sensitivity were measured with a probabilistic reversal-learning task, in which subjects could win and lose money. Executive functioning was measured with a planning task, the Tower of London. Performance and fMRI data were acquired in 19 problem gamblers, 19 smokers, and 19 healthy controls. Problem gamblers showed severe response perseveration, associated with reduced activation of right ventrolateral prefrontal cortex in response to both monetary gain and loss. Results did not fully generalize to smokers. Planning performance and related activation of the dorsal frontostriatal circuit were intact in both problem gamblers and smokers. PG is related to response perseveration and diminished reward and punishment sensitivity as indicated by hypoactivation of the ventrolateral prefrontal cortex when money is gained and lost. Moreover, intact planning abilities and normal dorsal frontostriatal responsiveness indicate that this deficit is not due to impaired executive functioning. Response perseveration and ventral prefrontal hyporesponsiveness to monetary loss may be markers for maladaptive behavior seen in chemical and nonchemical addictions. © 2009 Nature Publishing Group All rights reserved
Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.</p
The Lick AGN Monitoring Project 2016 : velocity-resolved Hβ lags in luminous Seyfert galaxies
Funding: K.H. acknowledges support from STFC grant ST/R000824/1.We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from April 2016 to May 2017. Targetingactive galactic nuclei (AGN) with luminosities of λLλ(5100 Å) ≈ 1044 erg s−1 and predicted Hβ lags of∼ 20–30 days or black hole masses of 107–108.5 M⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβ emission-line light curves, integrated Hβ lag times (8–30 days) measured against V -band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβ components, and virial black hole mass estimates (107.1–108.1 M⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this dataset will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.Publisher PDFPeer reviewe
- …