51 research outputs found

    The inositol phosphatase SHIP1 regulates skeletal development

    Get PDF
    Background/Introduction: Src-homology (SH) 2 domain-containing inositol-5-phosphatase 1 (SHIP1) is a lipid phosphatase expressed mainly in hematopoietic cells. SHIP1 regulates cell proliferation, differentiation, and survival via the PI3K/Akt signaling pathway. SHIP1-deficient (Styx) mice are osteoporotic, which is associated with an increased number of osteoclasts (OC). Purpose: This study aimed to investigate the underlying mechanisms through which SHIP1 controls osteoporosis. Methods: Osteoclast progenitor cells (OPC) were generated by incubating bone marrow cells with CSF-1. To develop OC, OPC from Styx, Styx het (heterozygous) and wt (wild type) mice were cultured with RANKL and CSF-1. Osteoclastogenesis was evaluated using an XTT cell viability assay, TRAP activity (OC marker) and qRT-PCR. Micro-computed tomography (Micro-CT) of vertebrae and femora were performed to evaluate the bone structure. Results: Deficiency in SHIP1 affected several aspects of bone. Compared to Styx het and wt controls, OPC-derived Styx OC presented several developmental defects, including a lower TRAP/XTT ratio and a 52% decrease in Calcr transcripts (encoding for the Calcitonin Receptor) (p<0.001). In vivo, there was a strong reduction of BV/TV in vertebrae and femora of Styx versus wt animals (39.6% and 35%, respectively, p<0.01). In particular, trabeculae in Styx vertebrae were increased by 8% (p<0.05) in numbers while decreased by 37% in thickness (p<0.001). In contrast, in Styx femora both the number and thickness of the trabeculae were decreased by 16% and 14%, respectively. These different phenotypes in Styx femora versus vertebrae indicate different paths to osteoporosis in bones with primary or secondary spongiosa. Conclusion(s): Taken together, our data indicate a central role for SHIP1-dependent PI3K/Akt signalling in bone remodeling. Further investigation will address the role of osteoblasts in the development of osteoporosis in SHIP1-deficient Styx mice

    Dimensions of Equity: Undergraduate Research Through Vertically Integrated Projects at Five Institutions

    Get PDF
    In this innovative practice work-in-progress paper, enrollment data from five institutions was used to examine equity in undergraduate research through Vertically Integrated Projects (VIP) Programs. VIP is a model for undergraduate research in which large student teams are embedded in faculty-driven projects. The American Association of Colleges and Universities recognizes undergraduate research as a high-impact experience, associated with higher graduation rates and greater learning gains in college. Participation in multiple high-impact experiences yields cumulative gains to students from all backgrounds, and compensatory gains for minoritized and marginalized students. Nationally however, minoritized students, first-generation college students, and transfer students participate in undergraduate research at lower rates than their peers. In this study, VIP enrollments at five institutions (N = 6,651 over two semesters) were compared to demographics of the institutions to determine the degree to which programs achieved equity among historically underserved minorities, transfer students, first-generation college students, and by gender. Analysis accounted for demographics and level of participation of the academic units involved, comparing enrollments with what would be expected under equitable enrollment. Analyses were done for each institution and across the pooled sample. By institution, equity across categories varied. Across the pooled sample, results show small effects sizes for status as a historically underserved minority, very small effect sizes for first-generation students and transfer students, and slightly higher participation among women than men. The large-scale nature of VIP teams enables institutions to scale-up their undergraduate research offerings. This paper begins answering the question of whether this scaling increases access for marginalized populations, and the results are encouraging. The paper is a work-in-progress, because data needs to be collected from more VIP institutions for a wider-ranging study. The chisquare test and the importance of using effect sizes in interpreting results will be explained, so others can apply the same method. Results, implications, and next steps are discussed

    Application Layer Authentication Using a Time-Based Password Effect upon the Smart Home Automation Controller

    No full text
    The evolution and convergence of embedded information and communication systems (ICS) technologies has contributed to an era of device-embedded smart objects whose continually increasing capabilities drives utility and an ever-expanding footprint. Collectively, the smart objects comprise the Internet of Things (IoT). Individually, the smart objects consist of thing-embedded or standalone microcontrollers, System on a Chip (SoC), and/or single-board computers (SBC) based devices whose capabilities include data generation, aggregation, communication, and/or data-driven actuation of cyber-physical components. Smart Home Automation (SHA) is at the forefront of the IoT revolution. The motivations for SHA include increased energy efficiencies, convenience, security, and the provision of assistive-living technologies within the domicile. Academic research into these areas has been ongoing for decades. The feasibility of SHA, however, has been a more recent realization resulting in an ever-expanding consumer market space. Contemporary research disclosing authentication vulnerabilities has been evidenced by wide-spread device comprise. Implementation of application authentication faces several challenges including constrained device resource limitations, key distribution or exchange, and device heterogeneity. Application authentication is critical to ensure the authenticity of the originating data source and, consequently, the integrity of the data, as well as the authorization of any subsequently triggered actions. Application authentication, particularly for machine to machine communications, is an active research area consisting of multiple broad focuses. Authentication efficiency research frequently examines device processor, memory, and power utilization. The goal of this study is to examine the effect incurred upon processor, memory, and power utilization by a SHA controller utilizing an enhanced authentication mechanism not typically studied, time-based dynamic passwords

    Front and Center

    No full text
    Newsletter providing "a lighter, human interest side of the news" from the Boston University Medical Campus
    corecore