55 research outputs found

    Financing transformative health systems towards achievement of the health Sustainable Development Goals: a model for projected resource needs in 67 low-income and middle-income countries

    Get PDF
    The ambitious development agenda of the Sustainable Development Goals (SDGs) requires substantial investments across several sectors, including for SDG 3 (healthy lives and wellbeing). No estimates of the additional resources needed to strengthen comprehensive health service delivery towards the attainment of SDG 3 and universal health coverage in low-income and middle-income countries have been published. Methods We developed a framework for health systems strengthening, within which population-level and individual-level health service coverage is gradually scaled up over time. We developed projections for 67 low-income and middle-income countries from 2016 to 2030, representing 95% of the total population in low-income and middle-income countries. We considered four service delivery platforms, and modelled two scenarios with differing levels of ambition: a progress scenario, in which countries' advancement towards global targets is constrained by their health system's assumed absorptive capacity, and an ambitious scenario, in which most countries attain the global targets. We estimated the associated costs and health effects, including reduced prevalence of illness, lives saved, and increases in life expectancy. We projected available funding by country and year, taking into account economic growth and anticipated allocation towards the health sector, to allow for an analysis of affordability and financial sustainability. Findings We estimate that an additional 274billionspendingonhealthisneededperyearby2030tomakeprogresstowardstheSDG3targets(progressscenario),whereasUS274 billion spending on health is needed per year by 2030 to make progress towards the SDG 3 targets (progress scenario), whereas US371 billion would be needed to reach health system targets in the ambitious scenario—the equivalent of an additional 41(range15102)or41 (range 15–102) or 58 (22–167) per person, respectively, by the final years of scale-up. In the ambitious scenario, total health-care spending would increase to a population-weighted mean of 271perperson(range74984)acrosscountrycontexts,andtheshareofgrossdomesticproductspentonhealthwouldincreasetoameanof75271 per person (range 74–984) across country contexts, and the share of gross domestic product spent on health would increase to a mean of 7·5% (2·1–20·5). Around 75% of costs are for health systems, with health workforce and infrastructure (including medical equipment) as the main cost drivers. Despite projected increases in health spending, a financing gap of 20–54 billion per year is projected. Should funds be made available and used as planned, the ambitious scenario would save 97 million lives and significantly increase life expectancy by 3·1–8·4 years, depending on the country profile. Interpretation All countries will need to strengthen investments in health systems to expand service provision in order to reach SDG 3 health targets, but even the poorest can reach some level of universality. In view of anticipated resource constraints, each country will need to prioritise equitably, plan strategically, and cost realistically its own path towards SDG 3 and universal health coverage

    The Iowa Homemaker vol.3, no.3-4

    Get PDF
    Table of Contents The Architectural Design of a Home by Allen Holmes Kimball, page 1 “For a Man’s House Is His Castle” by Alda Wilson, page 2 The Economics of Consumption compiled by John E. Brindley, page 3 Sunfast and Tubfast Materials by Pearl Apland, page 5 On Our Street by Juanita J. Beard, page 6 Who Is Responsible for the Child? by Orange H. Cessna, page 7 Summer Suppers by N. Beth Bailey, page 8 Vacation First Aid by Dr. Mary Sheldon, page 9 Episodes Concerning Evolution of Home Economics by Ruth Elaine Wilson, page 10 Extravagant Economics by Blanche Ingersoll, page 11 Breakfast Bridge by Eleanor Murray, page 12 Veishea Celebrates First Birthday by Helen G. Lamb, page 1

    Repeatability of short-duration transient visual evoked potentials in normal subjects

    Get PDF
    To evaluate the within-session and inter-session repeatability of a new, short-duration transient visual evoked potential (SD-tVEP) device on normal individuals, we tested 30 normal subjects (20/20 visual acuity, normal 24-2 SITA Standard VF) with SD-tVEP. Ten of these subjects had their tests repeated within 1–2 months from the initial visit. Synchronized single-channel EEG was recorded using a modified Diopsys Enfant™ System (Diopsys, Inc., Pine Brook, New Jersey, USA). A checkerboard stimulus was modulated at two reversals per second. Two different contrasts of checkerboard reversal patterns were used: 85% Michelson contrast with a mean luminance of 66.25 cd/m2 and 10% Michelson contrast with a mean luminance of 112 cd/m2. Each test lasted 20 s. Both eyes, independently and together, were tested 10 times (5 times at each contrast level). The following information was identified from the filtered N75-P100-N135 complex: N75 amplitude, N75 latency, P100 amplitude, P100 latency, and Delta Amplitude (N75-P100). The median values for each eye’s five SD-tVEP parameters were calculated and grouped into two data sets based on contrast level. Mean age was 27.3 ± 5.2 years. For OD only, the median (95% confidence intervals) of Delta Amplitude (N75-P100) amplitudes at 10% and 85% contrast were 4.6 uV (4.1–5.9) and 7.1 uV (5.15–9.31). The median P100 latencies were 115.2 ms (112.0–117.7) and 104.0 ms (99.9–106.0). There was little within-session variability for any of these parameters. Intraclass correlation coefficients ranged between 0.64 and 0.98, and within subject coefficients of variation were 3–5% (P100 latency) and 15–30% (Delta Amplitude (N75-P100) amplitude). Bland–Altman plots showed good agreement between the first and fifth test sessions (85% contrast Delta Amplitude (N75-P100) delta amplitude, mean difference, 0.48 mV, 95% CI, −0.18–1.12; 85% contrast P100 latency delay, −0.82 ms, 95% CI, −3.12–1.46; 10% contrast Delta Amplitude (N75-P100) amplitude, 0.58 mV, 95% CI, −0.27–1.45; 10% contrast P100 latency delay, −2.05 mV, 95% CI, −5.12–1.01). The inter-eye correlation and agreement were significant for both SD-tVEP amplitude and P100 latency measurements. For the subset of eyes in which the inter-session repeatability was tested, the intraclass correlation coefficients ranged between 0.71 and 0.86 with good agreement shown on Bland–Altman plots. Short-duration transient VEP technology showed good within-session, inter-session repeatability, and good inter-eye correlation and agreement

    Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing

    Get PDF
    Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS) and MHco10(CAVR), into the susceptible genome reference strain MHco3(ISE) using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s). This work presents a novel genetic approach to study anthelmintic resistance and provides a “proof-of-concept” of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci

    Endosymbiont DNA in Endobacteria-Free Filarial Nematodes Indicates Ancient Horizontal Genetic Transfer

    Get PDF
    Background: Wolbachia are among the most abundant symbiotic microbes on earth; they are present in about 66% of all insect species, some spiders, mites and crustaceans, and most filarial nematode species. Infected filarial nematodes, including many pathogens of medical and veterinary importance, depend on Wolbachia for proper development and survival. The mechanisms behind this interdependence are not understood. Interestingly, a minority of filarial species examined to date are naturally Wolbachia-free. Methodology/PrincipalFindings:We used 454 pyrosequencing to survey the genomes of two distantly related Wolbachia- free filarial species, Acanthocheilonema viteae and Onchocerca flexuosa. This screen identified 49 Wolbachia-like DNA sequences in A. viteae and 114 in O. flexuosa. qRT-PCR reactions detected expression of 30 Wolbachia-like sequences in A. viteae and 56 in O. flexuosa. Approximately half of these appear to be transcribed from pseudogenes. In situ hybridization showed that two of these pseudogene transcripts were specifically expressed in developing embryos and testes of both species. Conclusions/Significance: These results strongly suggest that the last common ancestor of extant filarial nematodes was infected with Wolbachia and that this former endosymbiont contributed to their genome evolution. Horizontally transferred Wolbachia DNA may explain the ability of some filarial species to live and reproduce without the endosymbiont while other species cannot

    Targeting Protein-Protein Interactions for Parasite Control

    Get PDF
    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable

    The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease

    Get PDF
    BackgroundStrongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions.Principal FindingsHere we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified.ConclusionsOverall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite

    HelmCoP: An Online Resource for Helminth Functional Genomics and Drug and Vaccine Targets Prioritization

    Get PDF
    A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html

    SmCL3, a Gastrodermal Cysteine Protease of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Parasitic infection caused by blood flukes of the genus Schistosoma is a major global health problem. More than 200 million people are infected. Identifying and characterizing the constituent enzymes of the parasite's biochemical pathways should reveal opportunities for developing new therapies (i.e., vaccines, drugs). Schistosomes feed on host blood, and a number of proteolytic enzymes (proteases) contribute to this process. We have identified and characterized a new protease, SmCL3 (for Schistosoma mansoni cathepsin L3), that is found within the gut tissue of the parasite. We have employed various biochemical and molecular biological methods and sequence similarity analyses to characterize SmCL3 and obtain insights into its possible functions in the parasite, as well as its evolutionary position among cathepsin L proteases in general. SmCL3 hydrolyzes major host blood proteins (serum albumin and hemoglobin) and is expressed in parasite life stages infecting the mammalian host. Enzyme substrate specificity detected by positional scanning-synthetic combinatorial library was confirmed by molecular modeling. A sequence analysis placed SmCL3 to the cluster of other cathepsins L in accordance with previous phylogenetic analyses
    corecore