728 research outputs found

    Evolution of size-dependent flowering in Onopordum illyricum: A quantitative assessment of the role of stochastic selection pressures

    Get PDF
    We explore the evolution of delayed, size-dependent reproduction in the monocarpic perennial Onopordum illyricum, using a range of mathematical models, parameterized with long-term field data. Analysis of the long-term data indicated that mortality, flowering, and growth were age and size dependent. Using mixed models, we estimated the variance about each of these relationships and also individual-specific effects. For the held populations, recruitment was the main density-dependent process, although there were weak effects of local density on growth and mortality Using parameterized growth models, which assume plants grow along a deterministic trajectory, we predict plants should flower at sizes approximately 50% smaller than observed in the field. We then develop a simple criterion, termed the "1-yr look-ahead criterion," based on equating seed production now with that of next year, allowing for mortality and growth, to determine at what size a plant should flower. This model allows the incorporation of variance about the growth function and individual-specific effects. The model predicts flowering at sizes approximately double that observed, indicating that variance about the growth curve selects for larger sizes at flowering. The 1-yr look-ahead approach is approximate because it ignores growth opportunities more than 1 yr ahead. To assess the accuracy of this approach, we develop a more complicated dynamic state variable model. Both models give similar results indicating the utility of the 1-yr look-ahead criterion. To allow for temporal variation in the model parameters, we used an individual-based model with a generic algorithm. This gave very accurate prediction of the observed flowering strategies. Sensitivity analysis of the model suggested that temporal variation in the parameters of the growth equation made waiting to flower more risky, so selected for smaller sizes at flowering. The models clearly indicate the need to incorporate stochastic variation in life-history analyses

    N-glycans of human amniotic fluid transferrin stimulate progesterone production in human first trimester trophoblast cells in vitro

    Get PDF
    Aims: During pregnancy, the placenta produces a variety of steroid hormones and proteins. Several of these substances have been shown to exert immunomodulatory effects. Progesterone is thought to mediate some of these effects by regulating uterine responsiveness. The aim of this study was to clarify the effect of amniotic fluid transferrin and its N-glycans on the release of progesterone by first trimester trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human first trimester placentae by trypsin-DNAse dispersion of villous tissue followed by a percoll gradient centrifugation and depletion of CD45 positive cells by magnetic cell sorting. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of transferrin from human amniotic fluid and serum as well as with N-glycans obtained from amniotic fluid transferrin. Culture supernatants were assayed for progesterone by enzyme-immunometric methods. Results: The release of progesterone increased in amniotic fluid transferrin- and N-glycan-treated trophoblast cell cultures compared to untreated trophoblast cells. There was no stimulating effect of serum transferrin on the progesterone production of trophoblast cells. Conclusions: The results suggest that amnion-transferrin and especially its N-glycans modulate the endocrine function of trophoblasts in culture by up regulating progesterone secretion

    Shearing Interferometer for Quantifying the Coherence of Hard X-Ray Beams

    Get PDF
    We report a quantitative measurement of the full transverse coherence function of the 14.4 keV x-ray radiation produced by an undulator at the Swiss Light Source. An x-ray grating interferometer consisting of a beam splitter phase grating and an analyzer amplitude grating has been used to measure the degree of coherence as a function of the beam separation out to 30 m. Importantly, the technique provides a model-free and spatially resolved measurement of the complex coherence function and is not restricted to high resolution detectors and small fields of view. The spatial characterization of the wave front has important applications in discovering localized defects in beam line optics

    Observation of a local gravity potential isosurface by airborne lidar of Lake Balaton, Hungary

    Get PDF
    Airborne lidar is a remote sensing method commonly used for mapping surface topography in high resolution. A water surface in hydrostatic equilibrium theoretically represents a gravity potential isosurface. Here we compare lidar-based ellipsoidal water surface height measurements all around the shore of a major lake with a local high-resolution quasi-geoid model. The ellipsoidal heights of the 87 km2 we sampled all around the shore of the 597 km2 lake surface vary by 0.8m and strong spatial correlation with the quasi-geoid undulation was calculated (R2 = 0.91). After subtraction of the local geoid undulation from the measured ellipsoidal water surface heights, their variation was considerably reduced. Based on a network of water gauge measurements, dynamic water surface heights were also successfully corrected for. This demonstrates that the water surface heights of the lake were truly determined by the local gravity potential.We conclude that both the level of hydrostatic equilibrium of the lake and the accuracy of airborne lidar were sufficient for identifying the spatial variations of gravity potential

    Longitudinal molecular microbial analysis of influenza-like illness in New York City, may 2009 through may 2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a longitudinal study of viral etiology in samples collected in New York City during May 2009 to May 2010 from outpatients with fever or respiratory disease symptoms in the context of a pilot respiratory virus surveillance system.</p> <p>Methods</p> <p>Samples were assessed for the presence of 13 viruses, including influenza A virus, by MassTag PCR.</p> <p>Results</p> <p>At least one virus was detected in 52% of 940 samples analyzed, with 3% showing co-infections. The most frequently detected agents were rhinoviruses and influenza A, all representing the 2009 pandemic H1N1 strain. The incidence of influenza H1N1-positive samples was highest in late spring 2009, followed by a decline in summer and early fall, when rhinovirus infections became predominant before H1N1 reemerged in winter. Our study also identified a focal outbreak of enterovirus 68 in the early fall of 2009.</p> <p>Conclusion</p> <p>MassTag multiplex PCR affords opportunities to track the epidemiology of infectious diseases and may guide clinicians and public health practitioners in influenza-like illness and outbreak management. Nonetheless, a substantial proportion of influenza-like illness remains unexplained underscoring the need for additional platforms.</p

    ASSESSMENT OF BOTTOM-OF-ATMOSPHERE REFLECTANCE IN LIDAR DATA AS REFERENCE FOR HYPERSPECTRAL IMAGERY

    Get PDF
    While airborne lidar has confirmed its leading role in delivering high-resolution 3D topographic information during the last decade, its radiometric potential has not yet been fully exploited. However, with the increasing availability of commercial lidar systems which (a) make use of full-waveform information and (b) operate at several wavelengths simultaneously, this potential is increasing as well. Radiometric calibration of the full-waveform information mentioned before allows for the derivation of physical target surface parameters such as the backscatter coefficient and a diffuse reflectance value at bottom of atmosphere (BOA), i.e. the target surface. With lidar being an active remote sensing technique, these parameters can be derived from lidar data itself, accompanied by the measurement or estimation of reference data for diffuse reflectance. In contrast to this, such a radiometric calibration for passive hyperspectral imagery (HSI) requires the knowledge and/or estimation of much more unknowns. However, in case of corresponding wavelength(s) radiometrically calibrated lidar datasets can deliver an areawide reference for BOA reflectance. This paper presents criteria to check where the assumption of diffuse BOA reflectance behaviour is fulfilled and how these criteria are assessed in lidar data; the assessment is illustrated by an extended lidar dataset. Moreover, for this lidar dataset and an HSI dataset recorded over the same area, the corresponding reflectance values are compared for different surface types

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods

    Resonance Raman Spectroscopy For In-Situ Monitoring Of Radiation Damage

    Get PDF
    Radiation induced damage of metal centres in proteins is a severe problem in X-ray structure determination. Photoreduction can lead to erroneous structural implications, and in the worst cases cause structure solution to fail. Resonance Raman (RR) spectroscopy is well suited in-situ monitoring of X-ray induced photoreduction. However the laser excitation needed for RR can itself cause photoreduction of the metal centres. In the present study myoglobin and rubredoxin crystals were used as model systems to assess the feasibility of using RR for this application. It is shown that at least 10-15 RR spectra per crystal can be recorded at low laser power before severe photoreduction occurs.Furthermore it is possible to collect good quality RR spectra from cryocooled protein crystals with exposure times of only a few seconds. Following extended laser illumination photoreduction is observed through the formation and decay of spectral bands as a function of dose. The experimental setup planned for integration into the SLS protein crystallography beamlines is also described. This setup should also prove to be very useful for other experimental techniques at synchrotrons where X-ray photoreduction is a problem e.g. X-ray absorption spectroscopy.Fil: Meents, A.. Swiss Light Source; SuizaFil: Owen, R. L.. Swiss Light Source; SuizaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Hildebrandt, P.. Swiss Light Source; SuizaFil: Schneider, R.. Swiss Light Source; SuizaFil: Pradervand, C.. Swiss Light Source; SuizaFil: Bohler, P.. Swiss Light Source; SuizaFil: Schulze Briese, C.. Swiss Light Source; Suiz

    Antibodies to Enteroviruses in Cerebrospinal Fluid of Patients with Acute Flaccid Myelitis.

    Get PDF
    Acute flaccid myelitis (AFM) has caused motor paralysis in &gt;560 children in the United States since 2014. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in &gt;90% of cases suggest a role for infectious agents. Cerebrospinal fluid (CSF) from 14 AFM and 5 non-AFM patients with central nervous system (CNS) diseases in 2018 were investigated by viral-capture high-throughput sequencing (VirCapSeq-VERT system). These CSF and serum samples, as well as multiple controls, were tested for antibodies to human EVs using peptide microarrays. EV RNA was confirmed in CSF from only 1 adult AFM case and 1 non-AFM case. In contrast, antibodies to EV peptides were present in CSF of 11 of 14 AFM patients (79%), significantly higher than controls, including non-AFM patients (1/5 [20%]), children with Kawasaki disease (0/10), and adults with non-AFM CNS diseases (2/11 [18%]) (P = 0.023, 0.0001, and 0.0028, respectively). Six of 14 CSF samples (43%) and 8 of 11 sera (73%) from AFM patients were immunoreactive to an EV-D68-specific peptide, whereas the three control groups were not immunoreactive in either CSF (0/5, 0/10, and 0/11; P = 0.008, 0.0003, and 0.035, respectively) or sera (0/2, 0/8, and 0/5; P = 0.139, 0.002, and 0.009, respectively).IMPORTANCE The presence in cerebrospinal fluid of antibodies to EV peptides at higher levels than non-AFM controls supports the plausibility of a link between EV infection and AFM that warrants further investigation and has the potential to lead to strategies for diagnosis and prevention of disease

    Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico

    Get PDF
    Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.The authors thank Valeria Bussetti for expert technical assistance. This study was supported by the National Institutes of Health (awards 5R21AI067281, AI057158, 5R21AI067281 and AI088647), the United States Department of Defense and an intramural grant from Iowa State University. AEF is supported by a grant from the Wellcome Trust (award 106207).This is the final version of the article. It first appeared from the Microbiology Society via http://dx.doi.org/10.1099/jgv.0.00042
    corecore