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ABSTRACT 22 

 23 

Sequences corresponding to a putative, novel rhabdovirus (designated Merida virus; MERDV) were 24 

initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The 25 

entire genome was sequenced, revealing 11,798 nucleotides and five major open reading frames that 26 

encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-27 

dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no 28 

more than 24%, 38% and 43% identity, respectively to the corresponding sequences of all other known 29 

rhabdoviruses whereas those of the P and M proteins have no significant identity with any sequences in 30 

the Genbank database and their identity is only suggested based on their genome position. Using specific 31 

RT-PCR assays established from the genome sequence, 27,571 Cx. quinquefasciatus which had been 32 

sorted in 728 pools were screened to assess the prevalence of MERDV in nature, and 25 pools were found 33 

positive. The minimal infection rate (MIR; calculated as the number of positive mosquito pools per 1,000 34 

mosquitoes tested) was 0.9, and similar for both female and male. Screening another 140 pools of 5,484 35 

mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, 36 

indicating that the host range is not restricted to Cx. quinquefasciatus. Attempts to isolate MERDV in 37 

C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed 38 

rhabdovirus occurs in mosquitoes in Mexico.  39 
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INTRODUCTION 40 

 41 

Rhabdoviruses (family Rhabdoviridae, order Mononegavirales) are a large and versatile group of viruses 42 

that are ubiquitous in nature (Kuzmin et al., 2009). The family consists of 11 genera as well as several 43 

viruses that have not yet been assigned to a genus (ICTV, 2015). Virions have a distinctive bullet or cone-44 

shaped morphology or appear bacilliform. Rhabdoviruses have broad host ranges that include humans and 45 

other terrestrial mammals, birds, reptiles, fish, insects and plants (Kuzmin et al., 2009, Mann and 46 

Dietzgen, 2014, Hoffmann et al., 2005). Many rhabdoviruses are transmitted to vertebrate and plant hosts 47 

by insect vectors in which they replicate (Hogenhout et al., 2003, Ammar el et al., 2009).  48 

 49 

Rhabdoviruses have a single-stranded, negative-sense RNA genome of approximately 11-16 kb. A 50 

universal feature of the rhabdovirus genome is the presence of at least five genes that code in 3’ to 5’ 51 

order for the structural proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein 52 

(G) and RNA-dependent RNA polymerase (L) (Walker et al., 2015, Fu, 2005). Each open reading frame 53 

(ORF) is flanked by relatively conserved cis-acting transcription initiation and transcription 54 

termination/polyadenylation signals that regulate mRNA expression. Rhabdovirus genomes are often 55 

interspersed with smaller ORFs that encode accessory proteins, most of which are of unknown function 56 

(Walker et al., 2011). ORFs that encode accessory proteins can occur as alternative or overlapping ORFs 57 

within the major structural protein genes or as independent ORFs in the intergenic regions that separate 58 

the structural protein genes. Leader and trailer sequences are located at the 3’ and 5’ termini of the 59 

rhabdovirus genome, respectively. These sequences are non-coding, A/U-rich and usually 50-100 nt in 60 

length. The first 10-20 nt of the leader and trailer sequences commonly exhibit partial complementary and 61 
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function as promotor sequences required for the initiation of genome and anti-genome replication, 62 

respectively (Walker et al., 2015, Fu, 2005).  63 

 64 

Many novel rhadboviruses have been discovered in recent years due to the advent of unbiased high 65 

throughput sequencing (UHTS) (Binger et al., 2015, Ito et al., 2013, Kading et al., 2013, Sakai et al., 66 

2015, Stremlau et al., 2015, Tokarz et al., 2014, Quan et al., 2010), including Bas-Congo virus which was 67 

associated with an outbreak of acute hemorrhagic fever in humans in the Democratic Republic of Congo 68 

(Grard et al., 2012). Here, we report the genomic organization and prevalence of an apparently novel 69 

rhabdovirus that was discovered by UHTS in mosquitoes in the Yucatan Peninsula of Mexico.  70 

 71 

RESULTS 72 

 73 

Discovery of Merida virus 74 

UHTS of total RNA from a pool of Cx. quinquefasciatus collected in Merida in the Yucatan Peninsula of 75 

Mexico generated a ~11 kb sequence corresponding to a putative, novel rhabdovirus tentatively named 76 

Merida virus (MERDV). Several other novel virus-like sequences were also discovered and these data 77 

will be presented elsewhere. The MERDV genome terminal sequences were identified using a 78 

combination of 5’ and 3’ rapid amplification of cDNA ends (RACE) and and Sanger sequencing. 79 

Difficulties were encountered during the 3’ RACE because the reverse primer bound preferentially to an 80 

A-rich region located slightly upstream of the 3’ terminus. The 3’ end of the genome was eventually 81 

identified by taking advantage of the partial complementarity that exists between the 5’ and 3’ termini of 82 

the rhabdovirus genome. The 3’ end of the MERDV genome was amplified and sequenced using a reverse 83 

primer designed from the inverse complement of the 24-nt sequence at the distal end of the 5’ terminus. 84 
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Therefore, our sequence may contain nucleotide errors in the 24 nt primer-binding region at the ultimate 85 

3’ end of the genome.  86 

 87 

Genomic organization 88 

The MERDV genome consists of 11,798 nucleotides (Genbank Accession Number KU194360) and its 89 

organization is consistent with that of the classical rhabdovirus genome: short leader and trailer sequences 90 

(68 and 74 nt, respectively) flank five structural protein genes in the order 3’-N-P-M-G-L-5’ (Fig. 1). The 91 

terminal nucleotides at the 5’ end of the MERDV genome are 5’-ACG-3’ and these same trinucleotides 92 

are located at the 5’ termini of other, related rhabdovirus genomes (Gubala et al., 2011, Kuwata et al., 93 

2011, Gubala et al., 2008, Zhu et al., 2011). The leader and trailer sequences are 59% and 58% A/U-rich, 94 

respectively. Each ORF is separated by a noncoding region of 54 to 153 nt that contains transcription 95 

initiation and termination sequences identified as AACAU and CAUG[A]7, respectively, through 96 

sequence alignment of conserved nucleotides. The only exception to these consensus motifs is the 97 

CUUG[A]7 transcription termination sequence that regulates M mRNA expression (Table 1). 98 

 99 

The genomic location and length of each predicted ORF is shown in Table 2. The ORF that encodes the N 100 

protein consists of 1437 nt. The predicted translation product is most closely related to the corresponding 101 

protein of Culex tritaeniorhynchus rhabdovirus (CTRV; 24% identity and 45% similarity) which was 102 

recently discovered in Cx. tritaeniorhynchus in Japan (Kuwata et al., 2011) and Yongjia tick virus 2 (also 103 

24% identity and 45% similarity) from Haemaphysalis hystricis ticks in China (Li et al., 2015). The next 104 

two ORFs encode translation products that have no significant identity with any other sequences in the 105 

Genbank database. These two ORFs are assumed to encode the P and M proteins based on their positions 106 

in the genome. The ORF that encodes the G protein consists of 1530 nt and the predicted translation 107 
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product is most closely related to the corresponding protein of CTRV (38% identity and 58% similarity). 108 

The next closest match is to a tandem rhabdovirus-like glycoprotein domain repeat sequence identified by 109 

the Aedes aegypti sequencing consortium (Nene et al., 2007). The largest ORF in the MERDV genome 110 

consists of 6411 nt and encodes the L protein. The predicted translation product is also most closely 111 

related to the corresponding region of CTRV (44% identity and 65% similarity). Minor ORFs of 102, 62, 112 

83 and 75 codons overlap the N, P, L and L genes, respectively, but are not obviously accessible via 113 

ribosomal scanning (Fig. 1). The AUG of a fifth ORF (75 codons) that overlaps the 5' end of the P ORF is 114 

apparently upstream of the P mRNA transcription start site, so also unlikely accessible for translation. 115 

 116 

Predicted domains and post-translational modifications 117 

The G proteins of rhabdoviruses have several common characteristics including the presence of two to six 118 

potential N-linked glycosylation sites, 12 well conserved cysteine residues, a N-terminal signal peptide, a 119 

transmembrane domain and a C-terminal short hydrophilic cytoplasmic domain (Walker and Kongsuwan, 120 

1999, Coll, 1995). The G protein of MERDV is predicted to contain four potential N-linked glycosylation 121 

sites (one less than the G protein of CTRV) (Kuwata et al., 2011). All 12 conserved cysteines are present 122 

with two additional cysteines located at residues 12 and 485 (in CTRV one additional cysteine is present) 123 

(Kuwata et al., 2011). The G protein of MERDV is predicted to contain a signal peptide at residues 1 to 124 

17, a hydrophobic transmembrane domain at residues 469 to 491 and a C-terminal hydrophilic 125 

cytoplasmic domain at residue 492 to 508, as common for rhabdoviral G proteins. Multiple protein kinase 126 

C (PKC) and tyrosine (TYR) phosphorylation sites are present in the N, P and M proteins of MERDV, 127 

consistent with many other rhabdoviruses including CTRV (Kuwata et al., 2011). Analysis with hhpred 128 

(Soding et al., 2005) revealed homology between the putative M protein of MERDV and Pfam family 129 

PF06326 ("vesiculovirus matrix proteins") indicating that it is indeed homologous to the M proteins of 130 
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other rhabdoviruses. 131 

 132 

Phylogenetic relationship to other rhabdoviruses  133 

The L-protein sequences from MERDV and 73 other rhabdovirus species were aligned using MUSCLE 134 

(Edgar, 2004) and a phylogenetic tree was constructed using MrBayes (Ronquist et al., 2012) (Fig. 2). 135 

MERDV is most closely related to CTRV, consistent with the amino acid sequence alignments. More 136 

distantly, MERDV is related to North Creek virus which was identified in Cx. sitiens in Australia (Coffey 137 

et al., 2014). Our analysis also indicated that MERDV cannot be assigned to one of the currently 138 

established rhabdovirus genera. Note that analyses of different genome regions (e.g. N) or of alignments 139 

with poorly aligning regions removed (e.g. with GBlocks; (Castresana, 2000)) provide different 140 

topologies in some of the deeper branches, but the clustering of MERDV with CTRV is consistent (data 141 

not shown). 142 

 143 

Prevalence in Cx. quinquefasciatus   144 

A total of 27,571 Cx. quinquefasciatus, sorted into 728 pools of up to 50 individuals, were screened by 145 

MERDV-specific reverse transcription-polymerase chain reaction (RT-PCR) (Tables 3 and 4). Collections 146 

were made in Merida and Tixkokob in 2007-2008 using mosquito magnets and in Merida in 2013 using 147 

CDC backpack-mounted aspirators. Mosquitoes obtained in 2007-2008 were tested according to gender 148 

whereas those from 2013 were not. Overall, 256 pools (8038 mosquitoes) were composed of females, 195 149 

pools (7196 mosquitoes) were composed of males and 277 pools (12,337 mosquitoes) were of mixed 150 

gender. Twenty-five mosquito pools were positive for MERDV RNA and the overall minimal infection 151 

rate (MIR; calculated as the number of positive mosquito pools per 1,000 mosquitoes tested) was 0.9. The 152 
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MIRs for female and male mosquitoes were similar (1.1 and 1.0, respectively). Evidence of MERDV 153 

infection was detected in mosquitoes collected in both study areas and during both time periods. 154 

 155 

Detection of MERDV sequence in other mosquito species   156 

Another 5484 mosquitoes belonging to seven species were tested by RT-PCR using MERDV-specific 157 

primers RHAB-for and RHAB-rev as well as RHAB-121-for and RHAB-280-rev. Mosquito species 158 

tested were as follows: Ae. aegypti (n = 419), An. albimanus (n = 727), An. crucians (n = 691), An. 159 

vestitipennis (n = 913), Oc. taeniorhynchus (n = 1000), Oc. trivittatus (n = 734) and Ps. cyanescens (n = 160 

1000) (Table 5). Collections were made using mosquito magnets at five study sites (Cozumel Island, 161 

Merida, Sian Ka’an, Tixkokob and Tzucacab) in 2007-2008. Mosquitoes had been sorted into 140 pools 162 

(20 pools per species) and all were female. MERDV RNA was detected in three pools of Oc. 163 

taeniorhynchus, and in three pools of Oc. trivittatus using both primer pairs while all other species were 164 

negative. The MERDV MIRs in Oc. taeniorhynchus and Oc. trivittatus were calculated as 3.0 and 4.1, 165 

respectively. All six PCR products generated using primers RHAB-121-for and RHAB-280-rev were 166 

analyzed by Sanger sequencing. The resulting 114-nt sequences had at least 99.1% nucleotide identity 167 

with the corresponding region of the MERDV genome sequence identified in Cx. quinquefasciatus (data 168 

not shown). 169 

 170 

Attempted virus isolations 171 

An aliquot of every homogenate positive for MERDV RNA (25 for Cx. quinquefasciatus, 3 for Oc. 172 

taeniorhynchus and 3 for Oc. trivittatus) was tested by inoculation of C6/36 cells. Cytopathic effects were 173 

not observed in any cultures, and a faint RT-PCR signal was only occasionally observed in supernatants 174 
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or cell lysates harvested from the initially inoculated C6/36 cell monolayers; no RT-PCR signal was 175 

obtained after any of the second or third blind passages. Three positive homogenates from Cx. 176 

quinquefasciatus were also tested by virus isolation in Vero cells but all were negative.   177 

 178 

Dinucleotide usage preferences of MERDV 179 

Vertebrate, invertebrate and plant virus hosts preferentially have certain codon and dinucleotide usage 180 

biases; for example, vertebrate sequences display a strong under-representation of UpA and CpG, while 181 

insect sequences display a strong under-representation of UpA but not of CpG (Simmen, 2008). RNA 182 

virus sequences often have preferences that mimic those of their native hosts (Greenbaum et al., 2008, 183 

Tulloch et al., 2014, Atkinson et al., 2014). Thus, analysis of dinucleotide frequencies in virus genomes 184 

may be used to infer host taxa (Kapoor et al., 2010). In a comparison of UpA and CpG usage in the L 185 

protein ORF of 80 NCBI rhabdovirus RefSeqs and MERDV, CTRV had the least under-representation of 186 

CpG (observed:expected ratio close to unity) while MERDV ranked second or third depending on the 187 

randomization protocol utilized (Fig. 3), suggesting that MERDV, as well as CTRV, are not well adapted 188 

to vertebrate hosts. 189 

  190 

DISCUSSION 191 

 192 

The advent of UHTS has resulted in the discovery of many novel rhabdoviruses (Binger et al., 2015, 193 

Grard et al., 2012, Ito et al., 2013, Kading et al., 2013, Sakai et al., 2015, Stremlau et al., 2015, Tokarz et 194 

al., 2014), including several which were isolated from Anopheles, Culex, Ochlerotatus and Psorophora 195 
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spp. mosquitoes (Vasilakis et al., 2014, Coffey et al., 2014, Quan et al., 2010). Here, we report the 196 

discovery of a putative, novel rhabdovirus in Culex and Ochlerotatus spp. mosquitoes from the Yucatan 197 

Peninsula of Mexico.  198 

 199 

Rhabdoviruses are hypothesized to be perhaps in majority hosted by insects (Li et al., 2015) and 200 

numerous cyto-, nucleo- and dimarhabdoviruses are transmitted by arthropods to their plant or vertebrate 201 

hosts (Bourhy et al., 2005, Hogenhout et al., 2003). This includes the bite of hematophagous arthropods 202 

(Comer et al., 1990, Perez De Leon et al., 2006), including Simulium vittatum blackflies which can 203 

transmit vesicular stomatitis New Jersey virus to cattle under experimental conditions (Mead et al., 2009) 204 

and Phlebotomus argentipes sandflies that efficiently transmitted Chandipura virus to laboratory mice 205 

(Mavale et al., 2007). It is currently unknown whether MERDV has the capacity to replicate in vertebrate 206 

hosts but should its host range include vertebrates, it is unlikely that virus persistence in nature is 207 

dependent upon the bite of hematophagous arthropods. Male mosquitoes do not feed on blood and thus a 208 

significant bias between male and female mosquito MIRs would be expected if that would be that case. 209 

Instead, the similar MIRs that we determined for MERDV are more compatible with vertical and venereal 210 

transmission. The occurrence of rhabdovirus transmission through these modes, in addition to horizontal 211 

transmission, has been demonstrated for example in Ae. aegypti mosquitoes for Chandipura virus (Mavale 212 

et al., 2005) and in phlebotomine sandflies for vesicular stomatitis Indiana virus (Tesh et al., 1972). A 213 

hallmark in the lifecycle of insect-specific sigmaviruses is the exclusively vertical transmission through 214 

eggs and sperm (Longdon et al., 2011). Currently no data are available to decide to what extend horizontal 215 

or vertical transmission contribute to the maintenance of MERDV in nature. Attempts to isolate MERDV 216 

by inoculation of Vero cells were unsuccessful and together with the determined CpG and UpA 217 
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dinucleotide usage biases suggest that MERDV is likely not to infect vertebrates in nature. However, 218 

attempts to isolate MERDV in C6/36 cells also were unsuccessful thus far. 219 

 220 

The inability to recover an isolate of MERDV in C6/36 cells is unexpected because this cell line supports 221 

the replication of a diverse range of mosquito-associated viruses, including several rhabdoviruses recently 222 

identified in Culex and Ochlerotatus spp. mosquitoes (Vasilakis et al., 2014, Coffey et al., 2014, Quan et 223 

al., 2010, Kuwata et al., 2011). However, it is not without precedent; Manitoba rhabdovirus from Cx. 224 

tarsalis is reported to not propagate in C6/36 cells, although it does replicate in Vero, primary chick 225 

embryo and mouse neuroblastoma cells (Artsob et al., 1991). Shortcomings in sample handling and 226 

possible failures in the cold-chain during transport are unlikely for the failure to isolate MERDV because 227 

one-quarter of our mosquito homogenates induced virus-like CPE when inoculated onto C6/36 cells, 228 

indicating that other, undetermined viruses did successfully propagate. Another possibility is that 229 

MERDV does not actively replicate in mosquitoes. It cannot be excluded that some of the field-collected 230 

mosquitoes passively carried MERDV without the virus being capable of replicating in the mosquito, 231 

despite the detection over multiple years, several locations, and specific species. Alternatively, we may 232 

have discovered another example of endogenous viral elements (EVEs) analogous to the rhabdovirus-like 233 

sequences described previously in various insect hosts (Li et al., 2015, Katzourakis and Gifford, 2010, 234 

Nene et al., 2007). However, such EVEs have thus far been reported to concern only partial sequences, at 235 

best covering one gene, but never what appears to be a complete, functional genome as we have found for 236 

MERDV. 237 

 238 

Amino acid sequence alignments and phylogenetic analyses indicated CTRV as the closest known relative 239 

of MERDV. CTRV was isolated in C6/36 cells from Cx. tritaeniorhynchus in Japan (Kuwata et al., 2011) 240 
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and later detected in Culex, Aedes, Anopheles and Armigeres spp. mosquitoes in China (Shi et al., 2015, 241 

Li et al., 2015). Recent studies have also shown that NIID-CTR cells, which were established from Cx. 242 

tritaeniorhynchus embryos, are persistently infected with CTRV (Gillich et al., 2015). CTRV establishes 243 

a non-cytolytic infection and, similar to sigmaviruses, employs vertical transmission. However, in 244 

contrast to sigmaviruses, CTRV replicates in the nucleus of the infected cell similar to 245 

nucleorhabdoviruses and it is the only known rhabdovirus that requires the cellular splicing machinery for 246 

its mRNA maturation. The coding region for the L protein of CTRV is interrupted by a 76-nt intron 247 

(Kuwata et al., 2011). Inspection of the MERDV sequence provided no evidence for the use of splicing 248 

similar to CTRV, suggesting that MERDV may not require a nuclear phase. Our proposed transcriptional 249 

signals match those confirmed for CTRV. While conservation of the termination signal sequence is seen 250 

in comparison to other rhabdoviruses, including the drosophila-specific sigmaviruses and Moussa virus, a 251 

potentially mosquito-specific rhabdovirus from Cx. decans mosquitoes (Quan et al., 2010), the initiation 252 

signal sequence differs from the two other viruses. Additionally, whereas sigmaviruses and Moussa virus 253 

do not show overlap of genes, the G and L genes of CTRV and both the M/G and G/L genes of MERDV 254 

show overlap. Other rhabdoviruses also possess overlapping transcription termination and transcription 255 

initiation sequences in their genomes including two more recently discovered mosquito-associated 256 

rhabdoviruses: Malpais Spring virus and Oak Vale virus (Vasilakis et al., 2013, Quan et al., 2011). 257 

Indeed, the positioning of the initiation signal of the downstream gene in front of the termination signal of 258 

the preceding gene or the use of splicing are not unprecedented in mononegaviruses, e.g. in human 259 

metapneumovirus or in bornaviruses, where these mechanisms have been hypothesized to adjust 260 

transcription levels possibly in conjunction with persistent infection, or attenuate gene expression in 261 

addition to the 3’ to 5’ transcriptional gradient characteristic for mononegaviruses (Collins et al., 1987, 262 

Schneemann et al., 1994, Schneider et al., 1994). 263 
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 264 

The translated primary sequences of MERDV N, G and L ORFs show significant homology to respective 265 

ORFs of other rhabdovirses. However, as also observed for CTRV, sigmaviruses and Moussa viruses, the 266 

P and M ORFs are far more diverse and do not exhibit homology to any other sequences in the GenBank 267 

database or to each other (except for the M proteins of sigmaviruses which have a very distant 268 

relationship to the corresponding protein of Flanders virus). In addition, sigmaviruses contain an 269 

additional ORF (designated ORF X) between the P and G ORFs.   270 

 271 

Although CTRV is the closest known relative of MERDV, these two viruses exhibit considerable 272 

sequence dissimilarity. The L proteins of MERDV and CTRV, which represent the most conserved 273 

genome regions of the rhabdoviruses, show an amino acid divergence of 56%. This is reaching the 274 

divergence observed between rhabdoviruses belonging to different genera, which is commonly in a range 275 

of 47 to 83% (Table S1). Since species and genus demarcations for rhabdoviruses also include factors 276 

such as biological characteristics (e.g. host range) and serological cross-reactivity, additional work will be 277 

needed to accurately determine the taxonomic status of MERDV within the family Rhabdoviridae.  278 

 279 

In summary, we provide evidence that a novel rhabdovirus occurs in mosquitoes in the Yucatan Peninsula 280 

of Mexico. This apparent virus, provisionally named Merida virus, is most closely related to CTRV, 281 

although it shows considerable sequence and biological divergence. Our findings underscore the vast 282 

diversity of this virus family, highlight the power of next-generation sequence technology in the discovery 283 

of novel viruses, and provide the basis for improved surveillance programs to gain better insights into 284 

arbovirus evolution.    285 

 286 
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METHODS 287 

 288 

Mosquito collections 289 

Mosquitoes were collected in five study areas in the Yucatan Peninsula of Mexico: Cozumel Island, 290 

Merida, Sian Ka’an, Tixkokob and Tzucacab. Descriptions of these study areas are provided elsewhere 291 

(Farfan-Ale et al., 2009, Farfan-Ale et al., 2010). Collections were made in 2007 and 2008 using 292 

Mosquito Magnets
TM

 (all five study areas) and in 2013 using backpack-mounted aspirators (Merida only). 293 

Mosquito magnets Pro-Liberty (American Biophysics Corp, North Kingstown, RI, USA) were baited with 294 

propane and octenol, and placed outdoors. Mosquito magnets were turned on between 16:00 and 18:00 295 

and collection nets were replaced the following morning between 06:00 and 09:00. CDC back-pack 296 

mounted aspirators were used to collect resting mosquitoes inside private residences. Mosquitoes were 297 

transported alive to the Universidad Autonoma de Yucatan (UADY), frozen at -80
o
C and identified on 298 

chill tables according to species and sex using morphological characteristics (Darsie, 1996). Mosquitoes 299 

were transported on dry ice from the UADY to Iowa State University by World Courier.  300 

 301 

High throughput sequencing  302 

Mosquitoes were homogenized as previously described (Farfan-Ale et al., 2009) and total RNA was 303 

extracted using Trizol (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. 304 

Extracts were reverse transcribed using SuperScript III (Thermo Fisher, Waltham, MA, USA) with 305 

random hexamers. The complementary DNA (cDNA) was RNase-H treated prior to second strand 306 

synthesis with Klenow Fragment (NEB, Ipswich, MA, USA). The generated double stranded cDNA was 307 

sheared to an average fragment size of 200 bp using manufacturer’s standard settings (Covaris focused-308 

ultrasonicator E210; Woburn, MA, USA). Sheared products were purified (Agencourt Ampure DNA 309 



15 
 

purification beads, Beckman Coulter, Brea, CA, USA) and libraries constructed. Sheared nucleic acid was 310 

end-repaired, dA-tailed, ligated to sequencing adapters (NEBNext modules, NEB), PCR amplified 311 

(Phusion High-Fidelity DNA polymerase, NEB) and quantitated by Bioanalyzer (Agilent, Santa Clara, 312 

CA, USA) for sequencing. Sequencing on the Illumina HiSeq 2500 platform (Illumina, San Diego, CA, 313 

USA) resulted in an average of 180 million reads per lane. Samples were de-multiplexed using Illumina 314 

software and FastQ files generated. Data were quality filtered and trimmed (Slim-Filter) and de novo 315 

assembled using Dwight assembler at custom settings (Golovko et al., 2012). The generated contiguous 316 

sequences (contigs) and unique singleton reads were subjected to homology search using blastn and blastx 317 

against the GenBank database. 318 

 319 

RT-PCR and Sanger sequencing 320 

Total RNA was analyzed by RT-PCR using MERDV-specific primers RHAB-for (5’-321 

CAATCACATCGACTACTCTAAATGGA-3’) and RHAB-rev (5’-322 

GATCAGACCTAGCTTGGCTGTTC-3’) which target a 490-nt region of the L protein gene, or RHAB-323 

121-for (5’-AACGCCCGACATGACTACTATCG-3’) and RHAB-280-rev (5’-324 

TTCCGTACCTCCCATATGAGTGG-3’) which target a 160-nt region of the N protein. Complementary 325 

DNAs were generated using Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) and 326 

PCRs were performed using Taq polymerase (Invitrogen) and the following cycling conditions: 94
o
C for 327 

3 min then 35 cycles of 94
o
C for 30 sec, 56

o
C for 45 sec and 72

o
C for 1 min followed by a final extension 328 

at 72
o
C for 8 min. RT-PCR products were purified using the Purelink Gel Extraction Kit (Invitrogen). 329 

Sanger sequencing was performed using a 3730x1 DNA sequencer (Applied Biosystems, Foster City, CA, 330 

USA). 331 

 332 

https://catalog.invitrogen.com/index.cfm?fuseaction=viewCatalog.viewProductDetails&productDescription=9685
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5’ and 3’ RACE 333 

The extreme 5’ and 3’ ends of the MERDV genome were determine by 5’ and 3’ RACE, respectively. In 334 

the 5’ RACE reactions, total RNA was reversed transcribed using a MERDV-specific primer (5’-335 

CTCAGAACGGAAGAGGTATACT G-3’). Complementary DNAs were purified by ethanol 336 

precipitation and oligo(dC) tails were added to the 3′ ends using 15 units of terminal deoxynucleotidyl 337 

transferase (Invitrogen) in 1x tailing buffer (10 mM Tris-HCl [pH 8.4], 25 mM KCl, 1.5 mM MgCl2 and 338 

0.02 mM dCTP). Tailing reactions were performed at 37
o
C for 30 min and then terminated by heat-339 

inactivation (65
o
C for 10 min). Oligo dC-tailed cDNAs were purified by ethanol precipitation then PCR 340 

amplified using a consensus forward primer specific to the C-tailed termini (5′-341 

GACATCGAAAGGGGGGGGGGG-3′) and a reverse primer specific to the MERDV cDNA sequence 342 

(5’-TTCCGTACCTCCCATATGAGTGG-3’). In the 3’ RACE reactions, polyadenylate [poly(A)] tails 343 

were added to the 3’ ends of the genomic RNA using 6 units of poly(A) polymerase (Ambion, Austin, 344 

TX, USA) in 1 x reaction buffer (40 mM Tris-HCl
 
[pH 8.0], 10 mM MgCl2, 2.5 mM MnCl2, 250 mM 345 

NaCl, 50 µg of bovine
 
serum albumin/ml and 1 mM ATP). Tailing reactions were performed at 37

o
C for 346 

1 hr and terminated by heat-inactivation (65
o
C for 10 min). Poly(A)-tailed RNA was reverse transcribed 347 

using a poly(A) tail-specific primer (5′-GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTT-3′). 348 

Complementary DNAs were PCR amplified using a forward primer specific to the MERDV cDNA 349 

sequence (5’-AAGAACATCGGGTATTGATCCGG-3’) and a reverse primer that matched the 5′ half of 350 

the poly(A)-specific reverse transcription primer (5′-GGCCACGCGTCGACTAGTAC-3′).  351 

 352 

PCR products generated from the 5’ and 3’ RACE reactions were inserted into the pCR4-TOPO cloning 353 

vector (Invitrogen) and ligated plasmids were transformed into competent TOPO10 Escherichia coli cells 354 

(Invitrogen). Cells were grown on Luria-Bertani agar containing ampicillin (50 μg/ml) and kanamycin 355 
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(50 μg/ml), and colonies were screened for inserts by PCR amplification. An aliquot of each PCR product 356 

was examined by 1% agarose gel electrophoresis and selected PCR products were purified by QIAquick 357 

spin column (Qiagen, Hilden, Germany) and sequenced using a 3730x1 DNA sequencer. 358 

 359 

Amino acid sequence alignments and prediction algorithms 360 

The predicted amino acid sequences of MERDV were compared to all other sequences in the Genbank 361 

database by application of tblastn (Altschul et al., 1990). Percent amino acid identities and similarities of 362 

select rhabdovirus protein sequences were calculated using ClustalW2 (available at: 363 

http://simgene.com/ClustalW). The following prediction algorithms were used for the amino acid 364 

sequence analysis: NetNGlyc 1.0 server (for the identification of potential N-linked glycosylation sites), 365 

SignalP 4.1 Server (for the identification of potential signal peptides), TMHMM Server v. 2.0 (for the 366 

identification of potential transmembrane domains and cytoplasmic domains) and NetPhos 2.0 Server (for 367 

the identification of potential PKC and TYR phosphorylation sites). 368 

 369 

Virus isolation 370 

An aliquot (200 μl) of each supernatant that tested positive for MERDV RNA was added to 2 ml of 371 

Liebovitz’s L15 medium (Invitrogen) supplemented with 2% fetal bovine serum, 2 mM L-glutamine, 100 372 

units/ml penicillin, 100 μg/ml streptomycin and 2.5 μg/ml fungizone. Samples were filtered using a 0.22 373 

μm filter and inoculated onto subconfluent monolayers of Aedes albopictus C6/36 cells in 75 cm
2
 flasks. 374 

Cells were incubated for at least 1 hr at room temperature on an orbital shaker. Another 12 ml of L15 375 

maintenance medium was added to each flask, and cells were incubated at 28
o
C for 7 days. After two 376 

additional blind passages, supernatants were harvested and tested by RT-PCR for the presence of 377 

MERDV RNA. 378 
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ABBREVIATIONS 386 

 387 

3’RACE: 3’ rapid amplification of cDNA ends 388 

5’RACE: 5’ rapid amplification of cDNA ends 389 

CDC:  Centers for Disease Control and Prevention 390 

cDNA:  Complementary DNA  391 

CTRV:  Culex tritaeniorhynchus rhabdovirus 392 

EVE:  Endogenous viral element 393 

G:  Glycoprotein 394 

L:  RNA-dependent RNA polymerase 395 

M:  Matrix 396 

MERDV: Merida virus 397 

MIR:  Minimal infection rate 398 

N:  Nucleoprotein  399 

ORF:  Open reading frame 400 

P:  Phosphoprotein 401 

PKC:  Protein kinase C 402 

RT-PCR: Reverse transcription-polymerase chain reaction 403 

Tyrosine:  TYR 404 

UADY: Universidad Autonoma de Yucatan 405 

UHTS:  Unbiased high throughput sequencing  406 
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FIGURE LEGENDS 587 

 588 

FIGURE 1. Coding capacity of Merida virus sequence. Main open reading frames (ORFs), as 589 

well as minor ORFs unlikely to be expressed, are indicated along a scaled representation of the 590 

antigenomic strand. The size of minor ORFs is indicated by their codon number. Blue, frame 1; 591 

green, frame 2; red, frame 3. 592 

 593 

FIGURE 2. Phylogenetic tree for MERDV and selected other rhabdovirus sequences. L protein 594 

amino acid sequences were aligned using MUSCLE (Edgar, 2004). A maximum likelihood 595 

phylogenetic tree was estimated using the Bayesian Markov chain Monte Carlo method 596 

implemented in MrBayes version 3.2.3 (Ronquist et al., 2012) sampling across the default set of 597 

fixed amino acid rate matrices with 10 million generations, discarding the first 25% as burn-in. 598 

The figure was produced using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The tree is 599 

midpoint-rooted and selected nodes are labelled with posterior probability values. Rhabdovirus 600 

genera, where defined, are labelled on the far right. GenBank accession numbers are indicated 601 

next to virus names. 602 

 603 

FIGURE 3. Relative UpA and CpG frequencies in the L-protein ORF of different rhabdovirus 604 

species. UpA and CpG frequencies were calculated in two different ways. (A) In each sequence, 605 

the numbers of UpA and CpG dinucleotides, and A, C, G and U mononucleotides, were counted. 606 

Dinucleotide frequencies, fXpY, were expressed relative to their expected frequencies, fX x fY, 607 

in the absence of selection. (B) To factor out codon and amino acid usage, 1000 shuffled ORF 608 

sequences were generated for each virus sequence. In each shuffled sequence, the original amino 609 
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acid sequence and the original total numbers of each of the 61 codons were maintained, but 610 

synonymous codons were randomly shuffled between the different sites where the corresponding 611 

amino acid is used in the original sequence. Next, the UpA and CpG frequencies in the original 612 

sequence were expressed relative to their mean frequencies in the codon-shuffled sequences. 613 

Because codon usage is factored out, the UpA and CpG relative frequencies tend to be less 614 

extreme in (B) compared to (A). Each point represents a single rhabdovirus sequence. Solid 615 

points correspond to species within defined genera, color-coded by genus (see key). Annotated 616 

open circles correspond to species that are currently unassigned at genus level, color-coded by 617 

host (or presumed host) taxa. Asterisks in the key indicate clades with uncertain host taxa: 618 

viruses in the unclassified "arthropod-infecting" clades (yellow open circles) have been isolated 619 

from arthropods but not from vertebrates; the sole representative of genus Tupavirus has been 620 

isolated from mammals but not from arthropods, although its phylogenetic position suggests that 621 

it may be arthropod-borne; the presence of viruses derived from vertebrates and viruses derived 622 

from arthropods in each of the unclassified "vertebrate (arthropod-borne)" clades (brick-red open 623 

circles) suggests that all of these viruses are likely arboviruses. GenBank accession numbers of 624 

sequences used: NC_000855, NC_000903, NC_001542, NC_001560, NC_001615, NC_001652, 625 

NC_002251, NC_002526, NC_002803, NC_003243, NC_003746, NC_005093, NC_005974, 626 

NC_005975, NC_006429, NC_006942, NC_007020, NC_007642, NC_008514, NC_009527, 627 

NC_009528, NC_011532, NC_011542, NC_011639, NC_013135, NC_013955, NC_016136, 628 

NC_017685, NC_017714, NC_018381, NC_018629, NC_020803, NC_020804, NC_020805, 629 

NC_020806, NC_020807, NC_020808, NC_020809, NC_020810, NC_022580, NC_022581, 630 

NC_022755, NC_024473, NC_025251, NC_025253, NC_025255, NC_025340, NC_025341, 631 

NC_025342, NC_025353, NC_025354, NC_025356, NC_025358, NC_025359, NC_025362, 632 



26 
 

NC_025364, NC_025365, NC_025371, NC_025376, NC_025377, NC_025378, NC_025382, 633 

NC_025384, NC_025385, NC_025387, NC_025389, NC_025391, NC_025392, NC_025393, 634 

NC_025394, NC_025395, NC_025396, NC_025397, NC_025398, NC_025399, NC_025400, 635 

NC_025401, NC_025405, NC_025406, NC_025408.  636 
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Table 1. Noncoding sequences in the Merida virus genome 

 

Gene Noncoding sequences at the start of the gene Noncoding sequences at the end of the gene 
*
IGR 

 

N ACGAAAACAAAAAATCCCCACTCAACAGTCAGAATCCATGTTGTCGTTG

GAGGTCTATGGAAATCCTTAACAUAACUAGUAUUAAUUAACUCUAA

UAUUUGACACUUUUGGAUUUUCUGGAACGCCCGAC 

 

GCCCUCACCUCGAGGACCCUCGGAUGCCCAGCAGGUUACAUGAA

AAAAA 

ACUCC 

P AACAUAACUAACUCGACCUCGGAAUCCGAUCAUUCACA 

 
CAUGAAAAAAA CUCC 

M AACAUCACUCACCUGAGACUCAUUCCCAGGUUAUUCUUGCCAAC AUCCCCCUUUAUAGACUUGGACCUUGUUAUUCCACAAUAAAGA

CAUAACAUAACUAGAAACUUGAAAAAAA 

 

†
N/A 

G AACAUAACUAGAAACUUGAAAAAAAGUUCCUCUGUGAAUUCCAG

GUAGACGGGCCGAAAAAG 

AGACCGUUAUGUAUCCCGCCUGUUCUUGGUUUGUCUGUGACCU

GAAUUCAAUUUUGCCGUACUAUUGGAUAAUUCUUUUCCUCCUC

UGAUUAUAUGUCUGUAAACUUUUAACAUGAAAAAAA 

 

†
N/A 

L AACAUGAAAAAAAUCAACAAAACUCAACGGGUAUCAUAUCAAAA GACCAGAUCAAAGAGGGAAAAGAGACAGAAGAGAGAACAUGAA

AAAAACATGATCCCGATTCCTATAGTCTGATAAGGACCTCTAGGAGTA

TGCTTGTTGAGTGGGGATTTTTTGTTTTCGT 

 

 

 

*
Intergenic region located immediately downstream of the gene of interest that is neither translated nor transcribed to mRNA; 

†
No IGR present 

due to gene overlap by 25 nt between the M and G genes and 13 nt between the G and L genes; solid underline indicates  sequence overlap. 

Bolded sequence indicates the predicted transcription start/stop sites. The three nucleotides indicated by dashed underline (AAC) and the AU 

of the start codon immediately downstream (not shown) are not predicted to serve as a transcription start site because they overlap the M 

coding sequence and are not in close proximity to any of the other coding sequences. Leader and trailer sequences are italicized.
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Table 2. Predicted locations and lengths the open reading frames encoded by the Merida virus 

genome  

 

Protein ORF 

Genomic location 

ORF 

length (nt) 

Protein 

length (aa) 

Protein 

mass (kDa) 

N 131-1567 1437 478 54.2 

P 1660-2862 1203 400 43.8 

M 2917-3477 564 187 21.0 

G 3586-5112 1530 509 56.8 

L 5266-11676 6411 2136 241.2 
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Table 3. Minimal infection rates for Merida virus in Culex quinquefasciatus in the Yucatan Peninsula 

of Mexico, 2007-2008 and 2013  

 

Study site Date No. mosquitoes 

tested 

No. pools tested 

(positive) 

‡
MIR 

*
Tixkokob 2007-2008 9071 247 

(2) 

0.2 

*
Merida 2007-2008 6163 204 

(14) 

2.3 

†
Merida 2013 12,337 277 

(9) 

0.7 

Total - 27,571 728 

(25) 

0.9 

 

*
Mosquitoes were collected outdoors using mosquito magnets; 

†
Mosquitoes were collected inside 

private residences using CDC backpack mounted aspirators; 
‡
Minimal infection rates are expressed as 

the number of positive mosquito pools per 1,000 mosquitoes tested 
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Table 4. Comparison of minimal infection rates for Merida virus in female and male Culex quinquefasciatus in the Yucatan Peninsula of 

Mexico, 2007-2008 

 

 

Study site 
*
No. mosquitoes tested No. pools tested (positive) 

†
MIR 

Females Males Total Females Males Total Females Males Total 

c
Merida 3018 3145 6163 112 

(7) 

92 

(7) 

204 

(14) 

2.3 2.2 2.3 

‡
Tixkokob 5020 4051 9071 144  

(2) 

103 

(0) 

247 

(2) 

0.4 0.0 0.2 

Total 8038 7196 15,234 256 

(9) 

195 

(7) 

451 

(16) 

1.1 1.0 1.1 

 

*
Cx. quinquefasciatus collected in Merida in 2013 are not listed because males and females were not tested separately; 

†
MIRs are 

expressed as the number of positive mosquito pools per 1,000 mosquitoes tested; 
‡
Mosquitoes were collected outdoors using mosquito 

magnets 
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Table 5. Minimal infection rates for Merida virus in selected Aedes, Anopheles, Ochlerotatus and 

Psorophora spp. mosquitoes    

 

Species 
*
No. mosquitoes 

tested 

No. pools 

tested 

(positive) 

†
MIR 

‡
Study site where 

positive pools  

were collected 

Ae. aegypti 419 20 

(0) 

0  

An. albimanus 727 20 

(0) 

0  

An. crucians 691 20 

(0) 

0  

An. vestitipennis 913 20 

(0) 

0  

Oc. taeniorhynchus 1000 20 

(3) 

3.0 Cozumel Island 

Oc. trivittatus 734 20 

(3) 

4.1 Cozumel Island,  

Merida and Tzucacab 

Ps. cyanescens 1000 20 

(3) 

0  

Total 5484 140 

(6) 

-  

 

*
All mosquitoes were female; 

†
Minimal infection rates are expressed as the number of positive 

mosquito pools per 1,000 mosquitoes tested, 
‡
Mosquitoes were collected using mosquito magnets at 

five study sites (Tixkokob, Merida, Cozumel Island, Sian Ka’an and Tzucacab) in 2007-2008 


