32 research outputs found
Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C\u3csub\u3e4\u3c/sub\u3e genus Spartina (Poaceae)
Leaf anatomy, stomatal density, and leaf conductance were studied in 10 species of Spartina (Poaceae) from low versus high salt marsh, and freshwater habitats. ⢠Internal structure, external morphology, cuticle structure, and stomatal densities were studied with light and electron microscopy. Functional significance of leaf structure was examined by measures of CO2 uptake and stomatal distributions. ⢠All species have Kranz anatomy and C 4 δ13C values. Freshwater species have thin leaves with small ridges on adaxial sides and stomata on both adaxial and abaxial sides. By contrast, salt marsh species have thick leaves with very pronounced ridges on the adaxial side and stomata located almost exclusively on adaxial leaf surfaces. Salt marsh species also have a thicker cuticle on the abaxial than on the adaxial side of leaves, and CO2 uptake during photosynthesis is restricted to the adaxial leaf surface. ⢠Salt marsh species are adapted to controlling water loss by having stomata in leaf furrows on the adaxial side, which increases the boundary layer, and by having large leaf ridges that fit together as the leaf rolls during water stress. Differences in structural-functional features of photosynthesis in Spartina species are suggested to be related to adaptations to saline environments
Genetic and environmental influences on stomates of big bluestem (Andropogon gerardii)
Big bluestem (Andropogon gerardii) is a dominant C4 prairie grass that has wide distribution and several genetically distinct ecotypes. Many of the ecotypic adaptations are related to water availability in the native environment. Stomates facilitate photosynthetic gas exchange and regulate water loss from the plant. As such, stomatal size and density represent possible adaptations to conserve water. We hypothesized drought-tolerant ecotypes of big bluestem would have fewer or smaller stomates compared to more mesic ecotypes. Five ecotypes of big bluestem were planted in four common gardens from western Kansas to southern Illinois, USA to determine genetic and environmental influences on stomates. Leaves of all ecotypes of A. gerardii were largely hypostomatous and genetics was a greater influence than environment for stomatal size and density. The drought-tolerant Sand bluestem had larger stomates on abaxial surfaces of leaves, but a lower density compared to most other ecotypes. The most mesic Illinois ecotype and the Kaw cultivar had the greatest density of stomates on abaxial surfaces of leaves. Sand Bluestem had a greater density of stomates on adaxial surfaces of leaves compared to all other ecotypes. Gas exchange measures followed patterns of stomate distribution, where abaxial CO2 uptake rates were greater than adaxial CO2 uptake rates, although differences between leaf surfaces was more pronounced in stomatal density than in CO2 uptake. There were minor differences in size and density of stomates among sites that corresponded with precipitation, although these differences were minor, illustrating the genetic underpinnings of stomates in big bluestem. There is a genetic predisposition for drought-tolerant ecotypes to have fewer stomates, illustrating an evolutionary adaptation to drought tolerance in an important prairie species
Environmental and genetic variation in leaf anatomy among populations of Andropogon gerardii (Poaceae) along a precipitation gradient
Premise of the study: Phenotypes of two Andropogon gerardii subspecies, big bluestem and sand bluestem, vary throughout the prairie ecosystem of North America. This study sought to determine the role of genetics and environment in driving adaptive variation of leaf structure in big bluestem and sand bluestem.
Methods: Four populations of big bluestem and one population of sand bluestem were planted in common gardens at four sites across a precipitation gradient from western Kansas to southern Illinois. Internal leaf structure and trichome density of A. gerardii were examined by light microscopy to separate genetic and environmentally controlled traits. Leaf thickness, midrib thickness, bulliform cells, interveinal distance, vein size, and trichome density were quantified.
Key results: At all planting sites, sand bluestem and the xeric population of A. gerardii had thicker leaves and fewer bulliform cells compared with mesic populations. Environment and genetic source population were both influential for leaf anatomy. Leaves from plants grown in mesic sites (Carbondale, Illinois and Manhattan, Kansas) had thicker midribs, larger veins, fewer trichomes, and a greater proportion of bulliform cells compared to plants grown in drier sites (Colby and Hays, Kansas).
Conclusions: Water availability has driven adaptive variation in leaf structure in populations of A. gerardii, particularly between sand bluestem and big bluestem. Genetically based differences in leaves of A. gerardii indicate adaptive variation and evolutionary forces differentiating sand bluestem from big bluestem. Environmental responses of A. gerardii leaves suggest an ability to adjust to drought, even in populations adapted to mesic home environments
Appendix A. Statistical results from the âsympatric vs. allopatricâ tests for local adaption.
Statistical results from the âsympatric vs. allopatricâ tests for local adaption
SPAD data
This file describes the SPAD data and contains the SAS code for analyse