1,028 research outputs found
Do Patient Reported Outcome Measurement Information System (PROMIS) Scales Demonstrate Responsiveness as Well as Disease-Specific Scales in Patients Undergoing Knee Arthroscopy?
Background: The Patient Reported Outcomes Information System (PROMIS) is an efficient metric able to detect changes in global health. Purpose: To assess the responsiveness, convergent validity, and clinically important difference (CID) of PROMIS compared with disease-specific scales after knee arthroscopy. Study Design: Cohort study (Diagnosis); Level of evidence, 2.
Methods: A prospective institutional review board–approved study collected PROMIS Physical Function (PF), PROMIS Pain Interference (PI), International Knee Documentation Committee (IKDC), and Knee injury and Osteoarthritis Outcome Score (KOOS) results in patients undergoing knee arthroscopy. The change from preoperative to longest follow-up was used in analyses performed to determine responsiveness, convergent validity, and minimal and moderate CID using the IKDC scale as the anchor.
Results: Of the 100 patients enrolled, 76 were included. Values of the effect size index (ESI) ranged from near 0 to 1.69 across time points and were comparable across scales. Correlations of the change in KOOS and PROMIS with IKDC ranged from r values of 0.61 to 0.79. The minimal CID for KOOS varied from 12.5 to 17.5. PROMIS PF and PI minimal CID were 3.3 and 23.2. KOOS moderate CID varied from 14.3 to 18.8. PROMIS PF and PI moderate CID were 5.0 and 25.8.
Conclusion: The PROMIS PF and PI showed similar responsiveness and CID compared with disease-specific scales in patients after knee arthroscopy. PROMIS PI, PROMIS PF, and KOOS correlations with IKDC demonstrate that these scales are measuring a similar construct. The ESIs of PROMIS PF and PI were similar to those of KOOS and IKDC, suggesting similar responsiveness at 6 months or longer (ESI .1.0). Minimum and moderate CID values calculated for PROMIS PF and PI using IKDC as an anchor were sufficiently low to suggest clinical usefulness.
Clinical Relevance: PROMIS PF and PI can be accurately used to determine improvement or lack thereof with clinically important changes after knee arthroscopy
Solar Wind at 6.8 Solar Radii from UVCS Observation of Comet C/1996Y1
The comet C/1996Y1, a member of the Kreutz family of Sun-grazing comets, was observed with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO) satellite. The Lyα line profile and spatial distribution are interpreted in terms of the theory of bow shocks driven by mass-loading. At the time of the observation, the comet was 6.8 R☉ from the Sun in a region of high-speed wind, a region difficult to observe directly with the SOHO instruments but an important region for testing models of solar wind acceleration and heating. We find a solar wind speed below 640 km s-1 and a constraint on the combination of solar wind speed and proton temperature. The total energy per proton at 6.8 R☉ is 50%-75% of the energy at 1 AU, indicating that significant heating occurs at larger radii. The centroid and width of the Lyα line generally confirm the predictions of models of the cometary bow shock driven by mass-loading as cometary molecules are ionized and swept up in the solar wind. We estimate an outgassing rate of 20 kg s-1, which implies an active area of the nucleus only about 6.7 m in diameter at 6.8 R☉. This is likely to be the size of the nucleus, because any inert mantle would have probably been blown off during the approach to the Sun
Association of Cancer Diagnosis With Disability Status among Older Survivors of Colorectal Cancer: a Population-Based Retrospective Cohort Study
BACKGROUND: Older cancer survivors likely experience physical function limitations due to cancer and its treatments, leading to disability and early mortality. Existing studies have focused on factors associated with surgical complications and mortality risk rather than factors associated with the development of poor disability status (DS), a proxy measure of poor performance status, in cancer survivors. We aimed to identify factors associated with the development of poor DS among older survivors of colorectal cancer (CRC) and compare poor DS rates to an age-sex-matched, non-cancer cohort.
METHODS: This retrospective cohort study utilized administrative data from the Texas Cancer Registry Medicare-linked database. The study cohort consisted of 13,229 survivors of CRC diagnosed between 2005 and 2013 and an age-sex-matched, non-cancer cohort of 13,225 beneficiaries. The primary outcome was poor DS, determined by Davidoff\u27s method, using predictors from 12 months of Medicare claims after cancer diagnosis. Multivariable Cox proportional hazards regression was used to identify risk factors associated with the development of poor DS.
RESULTS: Among the survivors of CRC, 97% were 65 years or older. After a 9-year follow-up, 54% of survivors of CRC developed poor DS. Significant factors associated with future poor DS included: age at diagnosis (hazard ratio [HR] = 3.50 for \u3e80 years old), female sex (HR = 1.50), race/ethnicity (HR = 1.34 for Hispanic and 1.21 for Black), stage at diagnosis (HR = 2.26 for distant metastasis), comorbidity index (HR = 2.18 for \u3e1), and radiation therapy (HR = 1.21). Having cancer (HR = 1.07) was significantly associated with developing poor DS in the pooled cohorts; age and race/ethnicity were also significant factors.
CONCLUSIONS: Our findings suggest that a CRC diagnosis is independently associated with a small increase in the risk of developing poor DS after accounting for other known factors. The study identified risk factors for developing poor DS in CRC survivors, including Hispanic and Black race/ethnicity, age, sex, histologic stage, and comorbidities. These findings underscore the importance of consistent physical function assessments, particularly among subsets of older survivors of CRC who are at higher risk of disability, to prevent developing poor DS
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope
Globular clusters with their large populations of millisecond pulsars (MSPs)
are believed to be potential emitters of high-energy gamma-ray emission. Our
goal is to constrain the millisecond pulsar populations in globular clusters
from analysis of gamma-ray observations. We use 546 days of continuous
sky-survey observations obtained with the Large Area Telescope aboard the Fermi
Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular
clusters. Steady point-like high-energy gamma-ray emission has been
significantly detected towards 8 globular clusters. Five of them (47 Tucanae,
Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices and clear evidence for an exponential cut-off in the range
1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission
from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral
indices , however the presence of an exponential cut-off
can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC
6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral
properties. From the observed gamma-ray luminosities, we estimate the total
number of MSPs that is expected to be present in these globular clusters. We
show that our estimates of the MSP population correlate with the stellar
encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters,
commensurate with previous estimates. The observation of high-energy gamma-ray
emission from a globular cluster thus provides a reliable independent method to
assess their millisecond pulsar populations that can be used to make
constraints on the original neutron star X-ray binary population, essential for
understanding the importance of binary systems in slowing the inevitable core
collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J.
Kn\"odlseder, N. Webb, B. Pancraz
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …