557 research outputs found

    Electronic Chart of the Future: The Hampton Roads Project

    Get PDF
    ECDIS is evolving from a two-dimensional static display of chart-related data to a decision support system capable of providing real-time or forecast information. While there may not be consensus on how this will occur, it is clear that to do this, ENC data and the shipboard display environment must incorporate both depth and time in an intuitively understandable way. Currently, we have the ability to conduct high-density hydrographic surveys capable of producing ENCs with decimeter contour intervals or depth areas. Yet, our existing systems and specifications do not provide for a full utilization of this capability. Ideally, a mariner should be able to benefit from detailed hydrographic data, coupled with both forecast and real-time water levels, and presented in a variety of perspectives. With this information mariners will be able to plan and carry out transits with the benefit of precisely determined and easily perceived underkeel, overhead, and lateral clearances. This paper describes a Hampton Roads Demonstration Project to investigate the challenges and opportunities of developing the “Electronic Chart of the Future.” In particular, a three-phase demonstration project is being planned: 1. Compile test datasets from existing and new hydrographic surveys using advanced data processing and compilation procedures developed at the University of New Hampshire’s Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC); 2. Investigate innovative approaches being developed at the CCOM/JHC to produce an interactive time- and tide-aware navigation display, and to evaluate such a display on commercial and/or government vessels; 3. Integrate real-time/forecast water depth information and port information services transmitted via an AIS communications broadcast

    Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response

    Get PDF
    A major barrier to successful antitumor vaccination is tolerance of high-avidity T cells specific to tumor antigens. In keeping with this notion, HER-2/neu (neu)-targeted vaccines, which raise strong CD8+ T cell responses to a dominant peptide (RNEU420-429) in WT FVB/N mice and protect them from a neu-expressing tumor challenge, fail to do so in MMTV-neu (neu-N) transgenic mice. However, treatment of neu-N mice with vaccine and cyclophosphamide-containing chemotherapy resulted in tumor protection in a proportion of mice. This effect was specifically abrogated by the transfer of neu-N–derived CD4+CD25+ T cells. RNEU420-429-specific CD8+ T cells were identified only in neu-N mice given vaccine and cyclophosphamide chemotherapy which rejected tumor challenge. Tetramer-binding studies demonstrated that cyclophosphamide pretreatment allowed the activation of high-avidity RNEU420-429-specific CD8+ T cells comparable to those generated from vaccinated FVB/N mice. Cyclophosphamide seemed to inhibit regulatory T (T reg) cells by selectively depleting the cycling population of CD4+CD25+ T cells in neu-N mice. These findings demonstrate that neu-N mice possess latent pools of high-avidity neu-specific CD8+ T cells that can be recruited to produce an effective antitumor response if T reg cells are blocked or removed by using approaches such as administration of cyclophosphamide before vaccination

    Community recommendations on terminology and procedures used in flooding and low oxygen stress research

    Get PDF
    Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and temporal variations in O2 concentrations are important cues for plants to modulate development (van Dongen & Licausi, 2015; Considine et al., 2016). Environmental conditions can also expand the low O2 regions within the plant. For example, excessive rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-associated increases in precipitation events have made flooding a major abiotic stress threatening crop production and food sustainability. This increased flooding and associated crop losses highlight the urgency of understanding plant flooding responses and tolerance mechanisms. Timely manifestation of physiological and morphological changes triggering developmental adjustments or flooding survival strategies requires accurate sensing of O2 levels. Despite progress in understanding how plants sense and respond to changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several questions remain unanswered due to a lack of high resolution tools to accurately and noninvasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it is therefore critical for researchers in the field to be aware of how experimental conditions can influence plant O2 levels, and thus on the importance of accurately reporting specific experimental details. This also requires a consensus on the definition of frequently used terms. At the 15th New Phytologist Workshop on Flooding stress (Voesenek et al., 2016), community members discussed and agreed on unified nomenclature and standard norms for low O2 and flooding stress research. This consensus on terminology and experimental guidelines is presented here. We expect that these norms will facilitate more effective interpretation, comparison and reproducibility of research in this field. We also highlight the current challenges in noninvasively monitoring and measuring O2 concentrations in plant cells, outlining the technologies currently available, their strengths and drawbacks, and their suitability for use in flooding and low O2 research

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    Effect of Zephyr Endobronchial Valves on Dyspnea, Activity Levels, and Quality of Life at One Year Results from a Randomized Clinical Trial

    Get PDF
    Rationale: Bronchoscopic lung volume reduction with Zephyr Valves improves lung function, exercise tolerance, and quality of life of patients with hyperinflated emphysema and little to no collateral ventilation. Objectives: Post hoc analysis of patient-reported outcomes (PROs), including multidimensional measures of dyspnea, activity, and quality of life, in the LIBERATE (Lung Function Improvement after Bronchoscopic Lung Volume Reduction with Pulmonx Endobronchial Valves used in Treatment of Emphysema) study are reported. Methods: A total of 190 patients with severe heterogeneous emphysema and little to no collateral ventilation in the target lobe were randomized 2:1 to the Zephyr Valve or standard of care. Changes in PROs at 12 months in the two groups were compared: dyspnea with the Transitional Dyspnea Index (TDI), focal score; the Chronic Obstructive Pulmonary Disease Assessment Test (CAT; breathlessness on hill/stairs); Borg; the EXAcerbations of Chronic pulmonary disease Tool-PRO, dyspnea domain; activity with the TDI, magnitude of task/effort/functional impairment, CAT (limited activities), and the St. George's Respiratory Questionnaire (SGRQ), activity domain; and psychosocial status with the SGRQ, impacts domain, and CAT (confidence and energy). Results: At 12 months, patients using the Zephyr Valve achieved statistically significant and clinically meaningful improvements in the SGRQ; CAT; and the TDI, focal score, compared with standard of care. Improvements in the SGRQ were driven by the impacts and activity domains (P, 0.05 and P, 0.001, respectively). Reduction in CAT was through improvements in breathlessness (P, 0.05), energy level (P, 0.05), activities (P, 0.001), and increased confidence when leaving home (P, 0.05). The TDI measures of effort, task, and functional impairment were uniformly improved (P, 0.001). The EXAcerbations of Chronic Pulmonary Disease Tool (EXACT)-PRO, dyspnea domain, was significantly improved in the Zephyr Valve group. Improvements correlated with changes in residual volume and residual volume/TLC ratio. Conclusions: Patients with severe hyperinflated emphysema achieving lung volume reductions with Zephyr Valves experience improvements in multidimensional scores for breathlessness, activity, and psychosocial parameters out to at least 12 months

    The age patterns of severe malaria syndromes in sub-Saharan Africa across a range of transmission intensities and seasonality settings

    Get PDF
    BACKGROUND: A greater understanding of the relationship between transmission intensity, seasonality and the age-pattern of malaria is needed to guide appropriate targeting of malaria interventions in different epidemiological settings. METHODS: A systematic literature review identified studies which reported the age of paediatric hospital admissions with cerebral malaria (CM), severe malarial anaemia (SMA), or respiratory distress (RD). Study sites were categorized into a 3 × 2 matrix of Plasmodium falciparum transmission intensity and seasonality. Probability distributions were fitted by maximum likelihood methods, and best fitting models were used to estimate median ages and to represent graphically the age-pattern of each outcome for each transmission category in the matrix. RESULTS: A shift in the burden of CM towards younger age groups was seen with increasing intensity of transmission, but this was not the case for SMA or RD. Sites with 'no marked seasonality' showed more evidence of skewed age-patterns compared to areas of 'marked seasonality' for all three severe malaria syndromes. CONCLUSIONS: Although the peak age of CM will increase as transmission intensity decreases in Africa, more than 75% of all paediatric hospital admissions of severe malaria are likely to remain in under five year olds in most epidemiological settings

    A Personalized Patient Preference Predictor for Substituted Judgments in Healthcare: Technically Feasible and Ethically Desirable

    Get PDF
    When making substituted judgments for incapacitated patients, surrogates often struggle to guess what the patient would want if they had capacity. Surrogates may also agonize over having the (sole) responsibility of making such a determination. To address such concerns, a Patient Preference Predictor (PPP) has been proposed that would use an algorithm to infer the treatment preferences of individual patients from population-level data about the known preferences of people with similar demographic characteristics. However, critics have suggested that even if such a PPP were more accurate, on average, than human surrogates in identifying patient preferences, the proposed algorithm would nevertheless fail to respect the patient’s (former) autonomy since it draws on the ‘wrong’ kind of data: namely, data that are not specific to the individual patient and which therefore may not reflect their actual values, or their reasons for having the preferences they do. Taking such criticisms on board, we here propose a new approach: the Personalized Patient Preference Predictor (P4). The P4 is based on recent advances in machine learning, which allow technologies including large language models to be more cheaply and efficiently ‘fine-tuned’ on person-specific data. The P4, unlike the PPP, would be able to infer an individual patient’s preferences from material (e.g., prior treatment decisions) that is in fact specific to them. Thus, we argue, in addition to being potentially more accurate at the individual level than the previously proposed PPP, the predictions of a P4 would also more directly reflect each patient’s own reasons and values. In this article, we review recent discoveries in artificial intelligence research that suggest a P4 is technically feasible, and argue that, if it is developed and appropriately deployed, it should assuage some of the main autonomy-based concerns of critics of the original PPP. We then consider various objections to our proposal and offer some tentative replies
    corecore