233 research outputs found

    Maintenance of Relationship Functioning For ePREP and OurRelationship for Low-income Couples

    Get PDF
    Symposium Title: Relationship Health Across Diverse and Underserved Communities: Connecting Theory and Practice to Inform Therapeutic Processes for Couple Distress Chairs: Judith Biesen, M.A., University of Notre Dame; Binghuang A. Wang, M.S., Binghamton University, State University of New York Discussant: Emily Georgia Salivar, Ph.D., Nova Southeastern Universit

    Effects of a Web-based Relationship Program on Co-parenting and Child Functioning

    Get PDF
    Symposium Title: Novel Preventive Intervention Strategies For Couples and Families: Extending the Reach and Social Impact of CBT to Promote Relationship Quality and Adult and Child Well-being Chair: Allen W. Barton, Ph.D., University of Illinois, Urbana Champaign Discussant: Scott Stanley, Ph.D., University of Denve

    Soil Carbon Stocks Are Stable under New Zealand Hill Country Pastures with Contrasting Phosphorus and Sheep Stocking Regimes

    Get PDF
    A temporal and spatial assessment is required to quantify the effects of nutrient inputs and varying grazing management regimes on soil organic carbon (SOC) stocks under grazed pastures in complex landscapes. We examined SOC stocks under permanent pastures in three farmlets under a range of different annual phosphorus (P) fertiliser and associated sheep stocking regimes. The farmlets examined had either no annual P applied (NF), 125 kg single superphosphate (SSP) ha-1 (LF), or 375 kg SSP ha-1 (HF) on an annual basis since 1980. Soils were sampled to three depths (0-75, 75-150, 150-300 mm) in 2003 and 2020, and to the two upper depths in 2014. Each farmlet included three slope classes [low slope (LS), medium slope (MS), high slope (HS)], on three different aspect locations [east (E), southwest (SW), northwest (NW)]. Although a trend (P = 0.07) was observed for greater SOC stocks in the upper depth of the HF farmlet (34.0 Mg C ha-1) compared with the other two farmlets (31.6 Mg C ha-1), this trend was discontinued in deeper layers. Accumulated SOC stocks (0-300 mm) were 111.1 (NF), 109.8 (LF) and 111.5 (HF) Mg C ha-1. Soil samples collected on HS resulted in higher soil bulk densities (BD) and carbon-to-nitrogen (C:N) ratios, and lower C concentration and SOC stocks, compared with samples collected on the other two slope classes. Soil samples collected on the NW-facing slopes resulted in higher BD, and lower C concentration and SOC stocks, compared with samples collected on the other two aspect locations. Under the current conditions, contrasting P fertiliser and sheep stocking regimes had minimal effects on SOC stocks. In contrast, topographic features had major effects on SOC stocks, and need to be considered in soil sampling protocols that monitor soil organic carbon stocks over space and time

    Model-based reasoning for power system management using KATE and the SSM/PMAD

    Get PDF
    The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications

    Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    Full text link
    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom

    Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Get PDF
    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions

    The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Get PDF
    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications

    Progress in Interferometry for LISA at JPL

    Full text link
    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of Time Delay Interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.Comment: 11 pages, 9 figures, LISA 8 Symposium, Stanford University, 201

    Structure-activity relationship studies of tetrahydroquinolone free fatty acid receptor 3 modulators

    Get PDF
    Free fatty acid receptor 3 (FFA3, previously GPR41) is activated by short-chain fatty acids, mediates health effects of the gut microbiota, and is a therapeutic target for metabolic and inflammatory diseases. The shortage of well-characterized tool compounds has however impeded progress. Herein, we report structure–activity relationship of an allosteric modulator series and characterization of physicochemical and pharmacokinetic properties of selected compounds, including previous and new tools. Two representatives, 57 (TUG-1907) and 63 (TUG-2015), showed improved solubility and preserved potency. Of these, 57, with EC50 = 145 nM and a solubility of 33 μM, showed high clearance in vivo but is a preferred tool in vitro. In contrast, 63, with EC50 = 162 nM and a solubility of 9 μM, showed lower clearance and seems better suited for in vivo studies. Using 57, we demonstrate for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia

    Acute inflammatory responses to high-intensity functional training programming: An observational study

    Get PDF
    Effects of varying types of short duration workouts in high-intensity functional training (HIFT) on inflammatory biomarkers have not been adequately characterized. Objectives: The purpose of this descriptive study was to examine the acute effects of HIFT workouts on biomarkers of inflammation, over time, in two HIFT bouts. Materials and Methods: Ten apparently healthy males (28.1 ± 5 yrs) completed two HIFT sessions (“short bout:” sub-5-minute vs. “long bout:” 15-minute) in a randomized crossover design. Blood was drawn pre and post-exercise, and 1 hour, 3 hours, and 6 hours post-exercise, centrifuged, and plasma frozen for analysis. Inflammation was assessed through plasma interleukin-6 (IL-6), interleukin-10 (IL-10), and tumour necrosis factor alpha (TNF-α). Results: Repeated measures ANOVA revealed a single trial-dependent difference (IL-6, p≤ 0.05), and while statistically significant, this difference may not be biologically significant. The biomarkers IL-6, IL-10, and TNF-α all follow a similar pattern of peaking post-exercise and returning to baseline within 6 hours in both trials. Conclusions: Both temporal responses and concentrations were similar in the short and long bout. A practical implication is that both bouts of a HIFT elicit certain specific physiologic inflammatory responses
    corecore