Decays of radionuclides throughout the Earth's interior produce geothermal
heat, but also are a source of antineutrinos. The (angle-integrated)
geoneutrino flux places an integral constraint on the terrestrial radionuclide
distribution. In this paper, we calculate the angular distribution of
geoneutrinos, which opens a window on the differential radionuclide
distribution. We develop the general formalism for the neutrino angular
distribution, and we present the inverse transformation which recovers the
terrestrial radioisotope distribution given a measurement of the neutrino
angular distribution. Thus, geoneutrinos not only allow a means to image the
Earth's interior, but offering a direct measure of the radioactive Earth, both
(1) revealing the Earth's inner structure as probed by radionuclides, and (2)
allowing for a complete determination of the radioactive heat generation as a
function of radius. We present the geoneutrino angular distribution for the
favored Earth model which has been used to calculate geoneutrino flux. In this
model the neutrino generation is dominated by decays in the Earth's mantle and
crust; this leads to a very ``peripheral'' angular distribution, in which 2/3
of the neutrinos come from angles > 60 degrees away from the downward vertical.
We note the possibility of that the Earth's core contains potassium; different
geophysical predictions lead to strongly varying, and hence distinguishable,
central intensities (< 30 degrees from the downward vertical). Other
uncertainties in the models, and prospects for observation of the geoneutrino
angular distribution, are briefly discussed. We conclude by urging the
development and construction of antineutrino experiments with angular
sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom