2,851 research outputs found
Spin Dynamics of the LAGEOS Satellite in Support of a Measurement of the Earth's Gravitomagnetism
LAGEOS is an accurately-tracked, dense spherical satellite covered with 426
retroreflectors. The tracking accuracy is such as to yield a medium term (years
to decades) inertial reference frame determined via relatively inexpensive
observations. This frame is used as an adjunct to the more difficult and data
intensive VLBI absolute frame measurements. There is a substantial secular
precession of the satellite's line of nodes consistent with the classical,
Newtonian precession due to the non-sphericity of the earth. Ciufolini has
suggested the launch of an identical satellite (LAGEOS-3) into an orbit
supplementary to that of LAGEOS-1: LAGEOS-3 would then experience an equal and
opposite classical precession to that of LAGEOS-1. Besides providing a more
accurate real-time measurement of the earth's length of day and polar wobble,
this paired-satellite experiment would provide the first direct measurement of
the general relativistic frame-dragging effect. Of the five dominant error
sources in this experiment, the largest one involves surface forces on the
satellite, and their consequent impact on the orbital nodal precession. The
surface forces are a function of the spin dynamics of the satellite.
Consequently, we undertake here a theoretical effort to model the spin
ndynamics of LAGEOS. In this paper we present our preliminary results.Comment: 16 pages, RevTeX, LA-UR-94-1289. (Part I of II, postscript figures in
Part II
Ecosystem carbon 7 dioxide fluxes after disturbance in forests of North America
Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C mâ2yâ1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C mâ2yâ1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER
Non-Invasive Raman Tomographic Imaging of Canine Bone Tissue
Raman spectroscopic diffuse tomographic imaging has been demonstrated for the first time. It provides a noninvasive, label-free modality to image the chemical composition of human and animal tissue and other turbid media. This technique has been applied to image the composition of bone tissue within an intact section of a canine limb. Spatially distributed 785-nm laser excitation was employed to prevent thermal damage to the tissue. Diffuse emission tomography reconstruction was used, and the location that was recovered has been confirmed by micro-computed tomography (micro-CT) images. With recent advances, diffuse tomography shows promise for in vivo clinical imaging.1, 2 In principle, algorithms developed for fluorescence imaging in tissue can be applied to Raman signals. Although the Raman effect is weaker than fluorescence, the scattered signal is detectable, and thus tomography is achievable. Here we demonstrate the first diffuse tomography reconstructions based on Raman scatter. Raman mapping and imaging are well-established techniques for examining material surfaces.3 Subsurface mapping of simple planar objects was reported recently4, 5 using fiber optic probes with spatially separated injection and collection fibers.6 Noninvasive measurements of bone Raman spectra were demonstrated at depths of5mm role= presentation \u3e5mm below the skin.5 Bone is promising for Raman tomography because the spectra are rich in compositional information,7 which reflects bone maturity and health. Spectroscopically measured bone composition changes have been correlated with aging8 and susceptibility to osteoporotic fracture.9 The Raman spectrum of bone mineral is easily distinguished from the spectra of proteins and other organic tissue constituents, facilitating recovery of even weak signals by multivariate techniques. Assessments of bone quantity and quality are essential to detect and monitor fracture risk and fracture healing with disease or injury. Common sites for fracture with osteoporosis are the spine, proximal femur, and distal radius. Stress fractures are most frequently seen in the weight-bearing sites of the tibia and metatarsals. Fracture risk depends on bone geometry, architecture, and material properties, as well as the nature of applied load (magnitude, rate, and direction). As a result, noninvasive imaging and nondestructive analysis methods have been developed to assess many of these bone attributes that are increasingly important to clinical practice and basic research in orthopedics.10 Current clinical in vivo methods include dual-energy x-ray absorptiometry (DXA), quantitative computed tomography (QCT), magnetic resonance imaging (MRI), ultrasound, and most recently, high-resolution peripheral QCT. Ex vivo analyses of bone specimens from patients or animals have also utilized these and other techniques. In this study, we couple micro-computed tomography (micro-CT) and diffuse optical tomography with Raman spectroscopy to recover spatial and composition information from bone tissue ex vivo. We demonstrate the first reconstruction-based recovery of Raman signals through thick tissues to yield molecular information about subsurface bone tissue. Reconstructions from transcutaneous Raman measurements are challenging, because layers of skin, muscle, fat, and connective tissue lie over the bone sites of interest. These layers have different optical properties and thus variably scatter and polarize the injected light.
We chose a canine model because of specimen availability and a bone size similar to human bone. We selected the tibia, a site that is clinically important and has relatively few overlying soft tissues. Measurements were made on the medial surface, where the only additional optical barrier is the crural extensor retinaculum ligament. The canine hind limb was harvested from an animal euthanized in an approved (UCUCA) University of Michigan study. The section of the limb distal to the knee was excised and scanned using in vivo micro-CT (eXplore Locus RS, GE Healthcare, Ontario, Canada). The tibia was scanned at80kV role= presentation \u3e80kV and 450ÎŒA role= presentation \u3e450ÎŒA with an exposure time of 100ms role= presentation \u3e100ms using a 360-deg scan technique. The image was reconstructed at a 93-ÎŒm role= presentation \u3e93-ÎŒm voxel resolution [Fig. 1a ]
Temperature of the Plasmasphere from Van Allen Probes HOPE
We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional EâĂBâ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurementsâgenerally between 0.2 and 2 eV (2000â20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes
White Matter Hyperintensity Regression: Comparison of Brain Atrophy and Cognitive Profiles with Progression and Stable Groups
Subcortical white matter hyperintensities (WMHs) in the aging population frequently represent vascular injury that may lead to cognitive impairment. WMH progression is well described, but the factors underlying WMH regression remain poorly understood. A sample of 351 participants from the Alzheimerâs Disease Neuroimaging Initiative 2 (ADNI2) was explored who had WMH volumetric quantification, structural brain measures, and cognitive measures (memory and executive function) at baseline and after approximately 2 years. Selected participants were categorized into three groups based on WMH change over time, including those that demonstrated regression (n = 96; 25.5%), stability (n = 72; 19.1%), and progression (n = 209; 55.4%). There were no significant differences in age, education, sex, or cognitive status between groups. Analysis of variance demonstrated significant differences in atrophy between the progression and both regression (p = 0.004) and stable groups (p = 0.012). Memory assessments improved over time in the regression and stable groups but declined in the progression group (p = 0.003; p = 0.018). WMH regression is associated with decreased brain atrophy and improvement in memory performance over two years compared to those with WMH progression, in whom memory and brain atrophy worsened. These data suggest that WMHs are dynamic and associated with changes in atrophy and cognition
Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies
Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVÎG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVÎG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses
Solar Neutrino Constraints on the BBN Production of Li
Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10}
\eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN)
calculations can make relatively accurate predictions of the abundances of the
light element isotopes which can be tested against observational abundance
determinations. At this value of \eta, the Li7 abundance is predicted to be
significantly higher than that observed in low metallicity halo dwarf stars.
Among the possible resolutions to this discrepancy are 1) Li7 depletion in the
atmosphere of stars; 2) systematic errors originating from the choice of
stellar parameters - most notably the surface temperature; and 3) systematic
errors in the nuclear cross sections used in the nucleosynthesis calculations.
Here, we explore the last possibility, and focus on possible systematic errors
in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7
production channel in BBN. The absolute value of the cross section for this key
reaction is known relatively poorly both experimentally and theoretically. The
agreement between the standard solar model and solar neutrino data thus
provides additional constraints on variations in the cross section (S_{34}).
Using the standard solar model of Bahcall, and recent solar neutrino data, we
can exclude systematic S_{34} variations of the magnitude needed to resolve the
BBN Li7 problem at > 95% CL. Additional laboratory data on
He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar
neutrinos, particularly if care is taken in determining the absolute cross
section and its uncertainties. Nevertheless, it already seems that this
``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions
are briefly discussed.Comment: 21 pages, 3 ps figure
Results of the combined U.S. multicenter postapproval study of the NitâOcclud PDA device for percutaneous closure of patent ductus arteriosus
ObjectivesTo report the results of the NitâOcclud PDA prospective postapproval study (PAS) along with a comparison to the results of the pivotal and continued access trials.BackgroundThe NitâOcclud PDA (PFM Medical, Cologne, Germany), a nitinol coil patent ductus arteriosus (PDA) occluder, was approved by the Food and Drug Administration in 2013.MethodsThe PAS enrolled a total of 184 subjects greater than 6âmonths of age, weighing at least 5âkg, with PDAs less than 4 mm by angiography at 11 centers. Patients were followed prospectively at 2 months, 12âmonths, and 24âmonths postprocedure. These outcomes were compared to the 357 subjects enrolled in the pivotal and continued access protocols. Efficacy and safety data were reported.ResultsAmong 184 subjects enrolled for the PAS between 2014 and 2017, 180 (97.8%) had successful device implantation. After 12âmonths, 98.7% (150/152) had trivial or no residual shunt by echocardiography and two subjects had only small residual shunts. There were three device embolizations that were all retrieved by snare without clinical consequence. Together with the pivotal and continued access study, 97.4% (449/461) had complete echocardiographic closure at 12âmonths in 541 enrolled subjects. The composite success was 94.4%. There were no mortalities and no serious deviceârelated adverse events.ConclusionsThe NitâOcclud PDA is a safe and effective device for closure of a small to moderate sized PDA. There were no serious deviceârelated adverse events in a large cohort of three clinical trials.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148398/1/ccd27995_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148398/2/ccd27995.pd
CMB observations from the CBI and VSA: A comparison of coincident maps and parameter estimation methods
We present coincident observations of the Cosmic Microwave Background (CMB)
from the Very Small Array (VSA) and Cosmic Background Imager (CBI) telescopes.
The consistency of the full datasets is tested in the map plane and the Fourier
plane, prior to the usual compression of CMB data into flat bandpowers. Of the
three mosaics observed by each group, two are found to be in excellent
agreement. In the third mosaic, there is a 2 sigma discrepancy between the
correlation of the data and the level expected from Monte Carlo simulations.
This is shown to be consistent with increased phase calibration errors on VSA
data during summer observations. We also consider the parameter estimation
method of each group. The key difference is the use of the variance window
function in place of the bandpower window function, an approximation used by
the VSA group. A re-evaluation of the VSA parameter estimates, using bandpower
windows, shows that the two methods yield consistent results.Comment: 10 pages, 6 figures. Final version. Accepted for publication in MNRA
The Arecibo Legacy Fast ALFA Survey: III. HI Source Catalog of the Northern Virgo Cluster Region
We present the first installment of HI sources extracted from the Arecibo
Legacy Fast ALFA (ALFALFA) extragalactic survey, initiated in 2005. Sources
have been extracted from 3-D spectral data cubes and then examined
interactively to yield global HI parameters. A total of 730 HI detections are
catalogued within the solid angle 11h44m < R.A.(J2000) < 14h00m and +12deg <
Dec.(J2000) < +16deg, and redshift range -1600 \kms < cz < 18000 \kms. In
comparison, the HI Parkes All-Sky Survey (HIPASS) detected 40 HI signals in the
same region. Optical counterparts are assigned via examination of digital
optical imaging databases. ALFALFA HI detections are reported for three
distinct classes of signals: (a) detections, typically with S/N > 6.5; (b) high
velocity clouds in the Milky Way or its periphery; and (c) signals of lower S/N
(to ~ 4.5) which coincide spatially with an optical object of known similar
redshift. Although this region of the sky has been heavily surveyed by previous
targeted observations based on optical flux-- or size-- limited samples, 69% of
the extracted sources are newly reported HI detections. The resultant
positional accuracy of HI sources is 20" (median). The median redshift of the
sample is ~7000 \kms and its distribution reflects the known local large scale
structure including the Virgo cluster. Several extended HI features are found
in the vicinity of the Virgo cluster. A small percentage (6%) of HI detections
have no identifiable optical counterpart, more than half of which are high
velocity clouds in the Milky Way vicinity; the remaining 17 objects do not
appear connected to or associated with any known galaxy.Comment: Astronomical Journal, in pres
- âŠ