291 research outputs found

    Asynchronous Multi-Context Systems

    Full text link
    In this work, we present asynchronous multi-context systems (aMCSs), which provide a framework for loosely coupling different knowledge representation formalisms that allows for online reasoning in a dynamic environment. Systems of this kind may interact with the outside world via input and output streams and may therefore react to a continuous flow of external information. In contrast to recent proposals, contexts in an aMCS communicate with each other in an asynchronous way which fits the needs of many application domains and is beneficial for scalability. The federal semantics of aMCSs renders our framework an integration approach rather than a knowledge representation formalism itself. We illustrate the introduced concepts by means of an example scenario dealing with rescue services. In addition, we compare aMCSs to reactive multi-context systems and describe how to simulate the latter with our novel approach.Comment: International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014). Proceedings of the International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), pages 31-37, technical report, ISSN 1430-3701, Leipzig University, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-15056

    Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences

    Full text link
    The paper describes an extension of well-founded semantics for logic programs with two types of negation. In this extension information about preferences between rules can be expressed in the logical language and derived dynamically. This is achieved by using a reserved predicate symbol and a naming technique. Conflicts among rules are resolved whenever possible on the basis of derived preference information. The well-founded conclusions of prioritized logic programs can be computed in polynomial time. A legal reasoning example illustrates the usefulness of the approach.Comment: See http://www.jair.org/ for any accompanying file

    Answer Set Solving with Bounded Treewidth Revisited

    Full text link
    Parameterized algorithms are a way to solve hard problems more efficiently, given that a specific parameter of the input is small. In this paper, we apply this idea to the field of answer set programming (ASP). To this end, we propose two kinds of graph representations of programs to exploit their treewidth as a parameter. Treewidth roughly measures to which extent the internal structure of a program resembles a tree. Our main contribution is the design of parameterized dynamic programming algorithms, which run in linear time if the treewidth and weights of the given program are bounded. Compared to previous work, our algorithms handle the full syntax of ASP. Finally, we report on an empirical evaluation that shows good runtime behaviour for benchmark instances of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full proofs and more example

    A Default Logic Patch for Default Logic

    Get PDF
    International audienceThis paper is about the fusion of multiple information sources represented using default logic. More precisely, the focus is on solving the problem that occurs when the standard-logic knowledge parts of the sources are contradictory, as default theories trivialize in this case. To overcome this problem, it is shown that replacing each formula belonging to Minimally Unsatisfiable Subformulas by a corresponding supernormal default allows appealing features. Moreover, it is investigated how these additional defaults interact with the initial defaults of the theory. Interestingly, this approach allows us to handle the problem of default theories containing inconsistent standard-logic knowledge, using the default logic framework itself

    Preferences of Agents in Defeasible Logic

    Get PDF
    We are interested in programming languages for cognitive agents with preferences. We define rule-based agent theories and inference procedures in defeasible logic, and in this setting we discuss patterns of agent behavior called agent types

    Exploring Unknown Universes in Probabilistic Relational Models

    Full text link
    Large probabilistic models are often shaped by a pool of known individuals (a universe) and relations between them. Lifted inference algorithms handle sets of known individuals for tractable inference. Universes may not always be known, though, or may only described by assumptions such as "small universes are more likely". Without a universe, inference is no longer possible for lifted algorithms, losing their advantage of tractable inference. The aim of this paper is to define a semantics for models with unknown universes decoupled from a specific constraint language to enable lifted and thereby, tractable inference.Comment: Also accepted at the 9th StarAI Workshop at AAAI-2

    Modeling Stable Matching Problems with Answer Set Programming

    Get PDF
    The Stable Marriage Problem (SMP) is a well-known matching problem first introduced and solved by Gale and Shapley (1962). Several variants and extensions to this problem have since been investigated to cover a wider set of applications. Each time a new variant is considered, however, a new algorithm needs to be developed and implemented. As an alternative, in this paper we propose an encoding of the SMP using Answer Set Programming (ASP). Our encoding can easily be extended and adapted to the needs of specific applications. As an illustration we show how stable matchings can be found when individuals may designate unacceptable partners and ties between preferences are allowed. Subsequently, we show how our ASP based encoding naturally allows us to select specific stable matchings which are optimal according to a given criterion. Each time, we can rely on generic and efficient off-the-shelf answer set solvers to find (optimal) stable matchings.Comment: 26 page

    Analysis of Dialogical Argumentation via Finite State Machines

    Get PDF
    Dialogical argumentation is an important cognitive activity by which agents exchange arguments and counterarguments as part of some process such as discussion, debate, persuasion and negotiation. Whilst numerous formal systems have been proposed, there is a lack of frameworks for implementing and evaluating these proposals. First-order executable logic has been proposed as a general framework for specifying and analysing dialogical argumentation. In this paper, we investigate how we can implement systems for dialogical argumentation using propositional executable logic. Our approach is to present and evaluate an algorithm that generates a finite state machine that reflects a propositional executable logic specification for a dialogical argumentation together with an initial state. We also consider how the finite state machines can be analysed, with the minimax strategy being used as an illustration of the kinds of empirical analysis that can be undertaken.Comment: 10 page
    • …
    corecore