
Preferences of Agents in Defeasible Logic?

Mehdi Dastani1, Guido Governatori2, Antonino Rotolo3, and Leendert van der Torre4

1 Intelligent Systems Group, Utrecht University,
P.O.Box 80.089, NL-3508 TB Utrecht, The Netherlands, Email: mehdi@cs.uu.nl

2 School of ITEE, The University of Queensland
Brisbane QLD 4072, Australia, Email: guido@itee.uq.edu.au

3 CIRSFID, University of Bologna
Via Galliera 3, I-40121 Bologna, Italy, Email: rotolo@cirsfid.unibo.it

4 CWI, Amsterdam, and Delft University of Technology
Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands, Email: torre@cwi.nl

Abstract. We are interested in programming languages for cognitive agents with
preferences. We define rule-based agent theories and inference procedures in de-
feasible logic, and in this setting we discuss patterns of agent behavior called
agent types.

1 Introduction

There are several rule-based approaches to programming cognitive agents [4,7,2]. In
this paper we extend the Defeasible Logic (DL) approach. DL is a simple, efficient
but flexible non-monotonic formalism able to deal with many different intuitions of
non-monotonic reasoning and recently applied in many fields. Here we propose a non-
monotonic logic of agency which extends the framework developed in [1]. DL is one of
the most expressive languages of the type we are interested in, and in particular it has
defined the largest set of patterns called agent types. Moreover, it is flexible to incorpo-
rate ideas from other languages which have not been introduced yet, such as extension
generation and selection from BOID [4], or deliberation languages from 3APL [7,5].

However, it has two drawbacks. First, DL, as well as its rival rule based program-
ming languages, is based on a uniform representation of rules, whereas in artificial
intelligence and in practical reasoning other complex structures have been proposed.
Most importantly, rule-based approaches are based on conditionals, whereas an alterna-
tive approach is based on comparative notions. Examples are preference logics and CP
nets instead of logics of desires and goals, ordered disjunctions instead of default logics,
betterness logics instead of logics of ideality, logics of sub-ideality in deontic logic, etc.
Second, it is not immediate how DL can deal with complex actions discussed in action
languages such as 3APL [7] and in recent incarnations of the BOID architecture [6]. In
this paper we address the first drawback while the second is left for future research.

Some issues of agent programming languages should be addressed: how to detect
and resolve conflicts that include such preferences, and which kind of agent types can be
? This work was partially supported by Australia Research Council under Discovery Project

No. DP0558854 on “A Formal Approach to Resource Allocation in Web Service Oriented
Composition in Open Marketplaces”.

S. Zhang and R. Jarvis (Eds.)
Australian Joint Conference on Artificial Intelligence, AI 2005,
LNAI 3809, pp. 695–704, 2005.
c© Springer 2005.

The original publication is available at www.springerlink.com.

http://www.springerlink.com

696 Mehdi Dastani, Guido Governatori, Antonino Rotolo, and Leendert van der Torre

introduced to deal with preferences. Summarizing, we therefore contribute to cognitive
agent programming languages by addressing the following research question: How to
use DL extended with graded preferences? This question breaks down in the following
sub-questions:

1. How to introduce graded preferences in DL?
2. How to detect and resolve conflicts using preferences?
3. How to define agent types based on preferences?

For the representation of preferences we use a variant of the ⊗ operator of [8] in DL,
because it has several advantages over other comparative notions. First, it has already
been integrated with a rule based formalism. Second, it has been applied to complicated
problems in deontic logic, e.g., to the so-called contrary-to-duty reasoning. Third, it al-
lows to clearly distinguish between conflicts and violations within a rule-based system.
In fact, though these notions may conflate, conflicts and violations have in general to be
kept separate. Suppose you have an agent doing A while an obligation states OBL¬A.
Since the logic for OBL is usually not reflexive, the scenario does not lead necessarily
to a logical conflict but a violation: indeed, conflict-resolution strategies may require
that OBL¬A is not overriden.

In this paper we focus on goal generation based on beliefs, desires, intentions and
obligations. Our system is rule-based, and rules will allow to derive new motivational
factors of an agent. We will divide the rules into rules for beliefs, desires, intentions, and
obligations. Provability for beliefs will not generate goals, since in our view they con-
cern agent’s knowledge about the world: beliefs may contribute to derive goals (desires,
intentions, and obligations), but they are not in themselves motivations for action.

The layout of this paper is as follows. In Section 2 we introduce agents with prefer-
ences in DL, and in Section 3 we show how to infer goal conclusions from rules with
preferences. In Section 4 we discuss conflicts among rules and patterns called agent
types.

2 Agents in defeasible logic

We focus on how mental attitudes and obligations jointly interplay in modeling agent
deliberation and behavior. The formal language contains modal literals, and preferences
(including literals as a borderline case).

Definition 1 (Language). Let M = {BEL,DES, INT,OBL} be a set of modal opera-
tors, and P a set of propositional atoms.

– The set of literals is defined as L = P∪{¬p|p ∈ P}.
– If q is a literal, ∼q denotes the complementary literal (if q is a positive literal p

then ∼q is ¬p; and if q is ¬p, then ∼q is p).
– Given the set of literals and the modal operators BEL, DES, INT, and OBL, if l is a

literal and X is a modal operator, then Xl and ¬Xl are modal literals. Every literal
l is an ⊗-expression. If l1, . . . , ln are literals then l1 ⊗ . . .⊗ ln is an ⊗-expression.
The goal language Lgoal is the smallest set that contains literals, modal literals and
⊗-expressions.

Preferences of Agents in Defeasible Logic 697

For X ∈ {BEL, INT,DES,OBL}, we have that φ →X ψ is a strict rule such that
whenever the premises φ are indisputable so is the conclusion ψ . φ ⇒X ψ is a defeasible
rule that can be defeated by contrary evidence. φ ;X ψ is a defeater that is used to
defeat some defeasible rules by producing evidence to the contrary.

Definition 2 (Rules). A rule r consists of its antecedent (or body) A(r) (A(r) may be
omitted if it is the empty set), an arrow (→ for a strict rule,⇒ for a defeasible rule, and
; for a defeater), and its consequent (or head) C(r). In addition the arrow is labelled
either with a modal operator X ∈ M. If the arrow is labelled with BEL the rule is for
belief, and similarly for the other modal operators.

– Given a rule r, A(r) is a set of literals or modal literals, and C(r) is a literal with no
occurrence of⊗ for strict rules, an⊗-expression for defeasible rules and defeaters.

– Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of strict
and defeasible rules in R by Rsd , the set of defeasible rules in R by Rd , and the set
of defeaters in R by Rdft. R[q] denotes the set of rules in R with consequent q. For
some i, 1≤ i≤ n, such that ci = q, R[ci = q] and rX

d [ci = q] denote, respectively, the
set of rules and a defeasible rule of type X with the head ⊗n

i=1ci.

Rules for beliefs are meant to constitute the reasoning core of the system. The purpose
of goal generation is to derive the other modal literals. For example, the application of
p ⇒INT q permits to infer INTq. Accordingly, modalities do not occur in the conse-
quents of rules to keep the system manageable.

Definition 3 (Defeasible agent theory). A defeasible agent theory is a structure D =
(F,RBEL,RDES,RINT,ROBL,>) where F is a finite set of facts, RBEL is a finite set of rules
for belief, RDES is a finite set of rules for desire, RINT is a finite set of rules for intention,
ROBL is a finite set of rules for obligation, and >, the superiority relation, is a binary
relation over the set of rules.

The superiority relation > says when one rule may override the conclusion of another
rule. Facts are indisputable statements. Beside the superiority relation, which is used
when we have contradictory conclusions, we can establish a preference over the con-
clusions by using the operator⊗. Thus, the intuitive reading of a sequence like a⊗b⊗c
means that a is preferred, but if ¬a is the case, then b is preferred; if ¬b is the case, then
the third choice is c.5

Definition 4 (Operators). A preference operator ⊗ is a binary operator satisfying
the following properties: (1) a⊗ (b⊗ c) = (a⊗ b)⊗ c (associativity); (2)

⊗n
i=1 ai =

(
⊗k−1

i=1 ai)⊗ (
⊗n

i=k+1 ai) where exists j such that a j = ak and j < k (duplication and
contraction on the right).

The general idea of degree of preferences is that ⊗ formulas are interpreted as pref-
erence formulas like in [8] and are here extended to cover all motivational compo-
nent: for beliefs, a construction such as ¬SunShining ⇒BEL Raining⊗ Snowing says

5 A similar approach, but with a different motivation has been proposed in the context of logic
programming by Brewka and co-worker in their logic of ordered disjunction [3].

698 Mehdi Dastani, Guido Governatori, Antonino Rotolo, and Leendert van der Torre

that the agent believes that it is raining, but if it is not raining then it is snowing as the
sun is not shining; for desires, rule TimeForHoliday⇒DES GoToAustralia⊗GoToSpain
means that, if it is time for holiday, the agent has the primary desire to go to Aus-
tralia, but, if this is not the case, her desire is to go to Spain; for intentions, rule
SunShining ⇒INT Jogging⊗Walking says that the agent intends to do jogging if the
sun is shining, but, if, for some other reasons, this is not the case, then she will have the
intention to have a walk; for obligations, rule Order ⇒OBL Pay⊗PayInterest says that,
if the agent sends her purchase order, then she will be obliged to pay, but, in the event
this is not done, she will have to pay interest.

The ⊗ formulas are characterized by the following subsumption relation among
rules, which is used in the following section to infer goals from an agent theory.

Definition 5. Let r1 = Γ ⇒X
⊗m

i=1 ai⊗b and r2 = Γ ′⇒X c be two goal rules. Then r1
subsumes r2 iff Γ ∪{¬a1, . . . ,¬am}= Γ ′, c = e and b = (e⊗ (

⊗n
k=1 dk)), 0≤ n.

The following example illustrates subsumption.

Example 1. Order ⇒OBL Pay⊗ PayInterest subsumes Order ⇒OBL Pay. Moreover,
Order ⇒OBL Pay⊗PayInterest subsumes Order,¬Pay⇒OBL PayInterest.

The following example illustrates the agent theory.

Example 2. (Running example) Suppose an agent desires an application server. She can
buy two products from X or Y . In general she prefers X but, for working with Linux,
she does not intend to order X’s product. X requires a payment, within 2 days, of 300$,
otherwise X forbids to download the software. Y requires a payment of 600$ within
1 day, or, as a second choice, a payment of 660$. The agent, for some reasons, does
not intend to pay to Y 660$. Agent’s financial resources amount to 700$, which are
available in 4 days. As facts, we also know that the agent is a Linux user. The following
piece of theory is considered to derive the agent’s goals.

F = {700$In4days,UseLinux,DESApplserver}
R = {r1 : 700$In4days⇒BEL ¬PayY600$1days, r2 : 700$In4days⇒BEL ¬PayX300$2days,

r3 : DESApplserver ⇒INT OrderX⊗OrderY, r4 : UseLinux⇒INT ¬OrderX

r5 : INTOrderY ⇒INT ¬PayY660$, r6 : INTOrderY ⇒OBL PayY600$1days⊗PayY660$,

r7 : INTOrderX ⇒OBL PayX300$2days⊗¬DownloadApplserverX}
>= {r4 > r3}

3 Goal generation: inference with preferences

Proofs are based on proof tags +∆ , −∆ , +∂ and −∂ . +∆X q means that q is provable
using only facts and strict rules for X , −∆X q means that it has been proved that q is not
definitely provable, +∂X q means that q is defeasibly provable in D and −∂X q means
that it has been proved that q is not defeasibly provable.

Definition 6 (Proofs). Given an agent theory D, a proof in D is a linear derivation, i.e,
a sequence of labelled formulas of the type +∆X q, −∆X q, +∂X q and −∂X q, where the
proof conditions defined in the rest of this section hold.

Preferences of Agents in Defeasible Logic 699

We start with some terminology. As explained in the previous section, the following
definition states the special status of belief rules, and that an introduction of a modal
operator corresponds to being able to derive the associated literal using the rules for the
modal operator.

Definition 7. Let # ∈ {∆ ,∂}, X ∈ {DES, INTOBL}, and P = (P(1), . . . ,P(n)) be a
proof in D. A literal q is #-provable in P if there is a line P(m) of P such that either

1. q is a literal and P(m) = +#BELq or
2. q is a modal literal X p and P(m) = +#X p or
3. q is a modal literal ¬X p and P(m) =−#X p;

a literal q is #-rejected in P if there is a line P(m) of P such that either

1. q is a literal and P(m) =−#BELq or
2. q is a modal literal X p and P(m) =−#X p or
3. q is a modal literal ¬X p and P(m) = +#X p.

The first type of tagged literals, denoted by ∆X , correspond to strict rules. The definition
of ∆X describes just forward chaining of strict rules:

+∆X : If P(i+1) = +∆X q then
(1) q ∈ F or
(2) ∃r ∈ RX

s [q] ∀a ∈ A(r) a is ∆ -provable or
(3) ∃r ∈ RBEL

s [q] ∀a ∈ A(r) Xa is ∆ -provable.

−∆X : If P(i+1) =−∆X q then
(1) q /∈ F and
(2) ∀r ∈ RX

s [q] ∃a ∈ A(r) : a is ∆ -rejected and
(3) ∀r ∈ RBEL

s [q] ∃a ∈ A(r) Xa is ∆ -rejected.

For a literal q to be definitely provable we need to find a strict rule with head q, whose
antecedents have all been definitely proved previously. And to establish that q cannot
be proven definitely we must establish that for every strict rule with head q there is at
least one of antecedent which has been shown to be non-provable. Condition (3) says
that a belief rule can be used as a rule for a different modal operator in case all literals
in the body of the rules are modalized with the modal operator we want to prove.

Conditions for ∂X are more complicated since we have to consider ⊗-expressions
that may occur in defeasible rules. We define when a rule is applicable or discarded. A
rule for a belief is applicable if all the literals in the antecedent of the rule are provable
with the appropriate modalities, while the rule is discarded if at least one the literals
in the antecedent is not provable. For the other types of rules we have to take complex
derivations into account called conversions [9]. We say there is a conversion from X
to Y if a X rule can also be used as a Y rule. We have thus to determine conditions
under which a rule for X can be used to directly derive a literal q modalized by Y .
Roughly, the condition is that all the antecedents a of the rule are such that +∂Y a. We
represent all allowed conversions by a conversion relation c (see next section for further
interpretation of conversions in terms of agent types).

Definition 8. Let a conversion relation c be a binary relation between {BEL, INT,DES,
OBL}, such that c(X ,Y) stands for the conversion of X rules into Y rules.

– A rule r in RBEL is applicable iff ∀a ∈ A(r), +∂BELa ∈ P(1..n) and ∀Xa ∈ A(r),
where X is a modal operator, +∂X a ∈ P(1..n).

700 Mehdi Dastani, Guido Governatori, Antonino Rotolo, and Leendert van der Torre

– A rule r ∈ Rsd [ci = q] is applicable in the condition for ±∂X iff
1. r ∈ RX and ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Ya ∈ A(r) +∂Y a ∈ P(1..n), or
2. r ∈ RY and ∀a ∈ A(r), +∂X a ∈ P(1..n).

– A rule r is discarded if we prove either −∂BELa or −∂X a for some a ∈ A(r).

Example 3. The belief rule a, INTb ⇒BEL c is applicable if we can prove +∂BELa and
+∂INTb.

Example 4. If we have a type of agent that allows a deontic rule to be converted into
a rule for intention, c(OBL, INT), then the definition of applicable in the condition for
±∂INT is as follows: a rule r ∈ Rsd [ci = q] is applicable iff (1) r ∈ RINT and ∀a ∈ A(r),
+∂a∈P(1..n) and ∀Xa∈A(r), +∂X a∈P(1..n), (2) or r ∈RO and ∀a∈A(r), +∂INTa∈
P(1..n).

The second type of tagged literals, denoted by ∂ , correspond to defeasible rules. Two
cases of these tagged literals are distinguished: +∂X to indicate positive defeasible prov-
ability for the modality X and −∂X to indicate negative defeasible provability for the
modality X . Proof conditions for ±∂X are thus as follows:

+∂X : If P(n+1) = +∂X q then
(1)+∆X q ∈ P(1..n) or

(2.1) −∆X∼q ∈ P(1..n) and
(2.2) ∃r ∈ Rsd [ci = q] such that r is applicable, and

∀i′ < i, −∂BELci′ ∈ P(1..n); and
(2.3) ∀s ∈ R[c j =∼q], either s is discarded, or

∃ j′ < j such that +∂X c j′ ∈ P(1..n), or
(2.3.1) ∃t ∈ R[ck = q] s.t. r is applicable and

∀k′ < k, −∂BELck′ ∈ P(1..n) and t > s

−∂X : If P(n+1) =−∂X q then
(1) −∆X q ∈ P(1..n)) and either

(2.1) +∆X∼q ∈ P(1..n) or
(2.2) ∀r ∈ Rsd [ci = q], either r is discarded or

∃i′ < i such that +∂BELci′ ∈ P(1..n), or
(2.3) ∃s ∈ R[c j =∼q], such that s is applicable and

∀ j′ < j, −∂X c j′ ∈ P(1..n) and
(2.3.1) ∀t ∈ R[ck = q] either t is discarded, or

∃k′ < k such that +∂BELck′ ∈ P(1..n) or t 6> s

For defeasible rules we deal with⊗ formulas, and this is where the subsumption relation
comes into the system. Roughly, a rule a ⇒X b⊗ c is interpreted as two rules a ⇒X b
and a,¬b ⇒X c. To show that q is provable defeasibly we have two choices: (1) We
show that q is already definitely provable; or (2) we need to argue using the defeasible
part of D. For this second case, three (sub)conditions must be satisfied. First, we require
that there must be a strict or defeasible rule for q which can be applied (2.1). Second,
we need to consider possible reasoning chains in support of ∼q, and show that ∼q is
not definitely provable (2.2). Third, we must consider the set of all rules which are not

Preferences of Agents in Defeasible Logic 701

known to be inapplicable and which permit to get∼q (2.3). Essentially each such a rule
s attacks the conclusion q. For q to be provable, s must be counterattacked by a rule t
for q with the following properties: (i) t must be applicable, and (ii) t must be stronger
than s. Thus each attack on the conclusion q must be counterattacked by a stronger rule.
In other words, r and the rules t form a team (for q) that defeats the rules s. −∂X q is
defined in an analogous manner.

The purpose of the −∂X inference rules is to establish that it is not possible to
prove +∂X . This rule is defined in such a way that all the possibilities for proving
+∂X q (for example) are explored and shown to fail before −∂X q can be concluded.
Thus conclusions tagged with −∂X are the outcome of a constructive proof that the
corresponding positive conclusion cannot be obtained.

Goals are obtained as +∂G or +∆G, G∈ {DES, INT,OBL}. As it was said, provabil-
ity for beliefs does not generate goals, since beliefs concern agent’s knowledge about
the world.

Example 5. (Running example; continued) Let us assume that the agent is realistic,
namely that beliefs override all motivational components (see Section 4). Below is the
set C of all conclusions we get using the rules in R:

C = {¬PayY600$1days, ¬PayX300$2days, INTOrderY,

INT¬OrderX, INT¬PayY660$}

Since the agent desires an application server, from r3, r4, r4 > r3 and ⊗-elimination,
we have +∂INTOrderY . This makes r6 and r5 applicable, while r7 is not. However, the
agent will have 700 $ available within 4 days and so, since the agent is realistic, from r1
we get +∂BEL¬PayY600$1days, which is a violation of the primary obligation in r6. We
would obtain +∂OBLPayY660$, but this not the case since the theory does not provide
criteria for resolving the conflict between this conclusion and that of r5.

4 Goal generation: conflict resolution and agent types

Classically, agent types are characterized by stating conflict resolution types in terms of
orders of overruling between rules [4,9]. For example, an agent is realistic when rules
for beliefs override all other components; she is social when obligations are stronger
than the other components with the exception of beliefs. Agent types can be charac-
terized by stating that, for any types of rules X and Y , for every r and r′ such that
r ∈ RX [ci = q] and r′ ∈ RY [di =∼q], we have that r > r′.

Let us assume to work with realistic agents, namely, with agents for which, for every
r and r′, r ∈ RBEL[ci = q] and r′ ∈ RY [di = ∼q], Y ∈ {DES, INT,OBL} we have that
r > r′. Table 1 shows al possible cases and, for each kind of rule, indicates all attacks
on it. Since we have defined four kinds of rules for generating goals, we have to analyze
twelve combinations. (To save space, in Table 1 “s-” is an abbreviation for “strongly-”.)
Independent and strongly-independent agents are free respectively to adopt desires and
intentions in conflict with obligations. For social and strongly-social agents obligations
override desires and intentions. For pragmatic and strongly-pragmatic, no derivation is
possible and so the agent’s generation of goals is open to any other course of action

702 Mehdi Dastani, Guido Governatori, Antonino Rotolo, and Leendert van der Torre
rOBL

d [ci = p]/ rINT
d [c j =∼p] rOBL

d [ci = p]/ rDES
d [c j =∼p] rINT

d [ci = p]/ rDES
d [c j =∼p]

+∂OBL p +∂INT∼p s-independent +∂OBL p +∂DES∼p independent +∂INT p +∂DES∼p unstable
+∂OBL p −∂INT∼p s-social +∂OBL p −∂DES∼p social +∂INT p −∂DES p stable
−∂OBL p +∂INT∼p s-deviant −∂OBL p +∂DES∼p deviant −∂INT p +∂DES∼p selfish
−∂OBL p −∂INT∼p s-pragmatic −∂OBL p −∂DES∼p pragmatic −∂INT p −∂DES∼p slothful

Table 1. Agent Types: Attacks

other than those specified in the rules considered. Stable and selfish agents are those for
which, respectively, intentions override desires or the opposite. Unstable agents are free
to adopt desires in conflict with intentions, while, for slothful agents, conflicting desires
and intentions override each other6.

This taxonomy can be enriched thanks to the role played by ⊗-expressions. In fact,
in traditional rules-based systems, conflict-detection returns a boolean: either there is
a conflict, or there is not. For ⊗ constructs, it seems that we may need a finer distinc-
tion. For example, we can have degrees of violation. Of course, if we define a conflict
detection function that returns no longer booleans but a more complex structure (e.g.,
an integer that returns 0 if no violation, 1 if violation of primary obligation, 2 if viola-
tion of secondary obligation), then we have to write conflict resolution methods which
can somehow deal with this. Section 3 provides criteria to solve conflict between rules
including ⊗ constructions. In this perspective, the role of ⊗ can be made fruitful. In
particular, the introduction of ⊗ is crucial if we want to impose some constraints on
the number of violations in deriving a goals. Goal generation can be constrained, so
that provability of a goal g is permitted only if getting g does not require more than n
violations for each rule with g in the head:

Definition 9 (Violation constraint on goals). Let n and X be an integer and a type of
rule, respectively. A theory D will be n-X-constrained iff, given the definition of +∂ , for
all literals q, +∂X q iff (1) i′′ ≤ n; and (2) if 1 ≤ j′′ ≤ j′ and s ∈ RX , then j′′ ≤ n; and
(3) k′ ≤ n. Otherwise, −∂X q.

Similar intuitions are applicable to directly constraint agent types, thus introducing
graded agent types: e.g., for any two rules r1 : rOBL

d [ci = p] and r2 : rDES
d [c j = ∼p]

we may reframe the type “social” of Table 1 stating that an n-social agent is such that

+∂OBL p/−∂DES∼p iff i≤ n

Thus the idea of agent type can also be generalized taking into account ⊗ constructs.
It is possible to integrate the above classifications by referring to the notion of con-

version [9]. Conversions do not have a direct relation with conflict resolution because
they simply affect the condition of applicability of rules. However, they contribute to de-
fine the cognitive profile of agents because they allow to obtain conclusions modalized
by a certain X through the application of rules which are not modalized by X . Accord-
ing to this view, for example, we may have agent types for which, given p⇒OBL q and
+∂INT p we can obtain +∂INTq. Of course, this is possible only if we assume a kind of
norm regimentation, by which we impose that all agents intend what is prescribed by de-
ontic rules. This conversion, in particular, seems appropriate to characterize some kinds

6 Table 1 covers only some agent types as it focuses on attacks that involve only two rules.

Preferences of Agents in Defeasible Logic 703

of social agent. Other conversions, which, on the contrary, should hold for all realistic
agents are, for example, those that permit to obtain +∂X q, X ∈ {DES, INT,OBL}, from
p ⇒BEL q and +∂X p [9]. Table 2 shows the conversions and specifies the agent types
with respect to which each conversion seems to be appropriate. We assume to work at
least with realistic agents. Since conversions are used only indirectly for conflict res-
olution but are conceptually decisive for characterizing agents, they provide criteria to
specify new agent types. Not all conversion types make sense and so we consider only
9 of 12 cases. At which phase do agent types intervene in the treatment of conflicts? We

c(BEL,OBL) realistic c(BEL, INT) realistic c(BEL,DES) realistic
c(OBL,DES) c-social c(OBL, INT) c-strongly-social c(DES,OBL) c-deviant
c(INT,DES) c-stable c(DES, INT) c-selfish c(INT,OBL) c-strongly-deviant

Table 2. Conversions

argue that classic agent types, but also violation constraints and conversions, play their
role mainly in the goal generation phase, because all these features mainly contribute
to characterize the motivational profile of the agent.

Example 6 (Running example; continued). Suppose the agent be strongly-social and
c-strongly-social, namely, that obligations override intentions and that we accept con-
version c(OBL, INT). So, we obtain the following additional goals:

{OBLPayY660$, INTPayY660$}

Since r6 is now stronger than r5, we obtain OBLPayY660$, while the second goal is
derived via r6 and conversion c(OBL, INT). This second means that we dropped the
previous conclusion that the agent intended the opposite.

Assume now that the theory is also 0-X-constrained, for X ∈ {INT,OBL}. This
means that no violation is permitted. If so, no new intention or obligation can be derived.

Finally, suppose the agent is realistic and 1-stable. Let us add to RX the rule r′ :
a ⇒DES ¬OrderY , and to F the fact a. Thus we would obtain DES¬OrderY , which is
in conflict with the conclusion that can be obtained from r3. Indeed this is the case since
an intention overrides a conflicting desire only if the former is a primary intention.

5 Conclusions and Future Work

In this paper we study programming languages for cognitive agents with preferences.
We define rule-based agent theories and inference procedures in defeasible logic using a
variant of the⊗ operator of [8] in DL for the representation of preferences, and inspired
by the BOID architecture [6] separating conflict-detection from -resolution.

We show how to detect and resolve conflicts using preferences. Programming lan-
guages for cognitive agents need such fine-grained mechanisms to represent and re-
solve conflicts among rules for the interaction among mental attitudes – though ways
to resolve conflicts must be described abstractly. We define agent types based on pref-
erences. Agent programming languages must describe patterns of ways to deal with
conflicts and more generally patterns of agent behavior. Such patterns have been called

704 Mehdi Dastani, Guido Governatori, Antonino Rotolo, and Leendert van der Torre

agent types. Traditional agent types are realistic and committed, other notions intro-
duced before are stable, selfish, social and opportunistic. In this paper we distinguish
twelve agent types for attacks and nine for conversions.

Agent programming languages have to distinguish between an abstract language
that deals with interaction among mental attitudes, called a deliberation language, and
low level procedures to deal with definitions of conflicts based on temporal and causal
reasoning, resources, scheduling, and the like. In this paper we assumed that we can use
the same deliberation language with preferences as has been used by Dastani and van
der Torre [6].

The architecture for cognitive agents can be divided into modules: goal generation
module and plan generation module. In this paper we confined ourselves only to the
former. Plan generation can be achieved in a similar way. The the inference mechanism
(based on defeasible logic) will be used to deduce sequence of actions (plans) that are
required to achieve goals. Thus special rules that permit to infer plans must be devised
if certain beliefs and goals are given or obtained via the goal generation module. This
means that we have to introduce planning rules, where a planning rule has the follow-
ing format φ1, . . . ,φn : ψ ⇒p π . The intuition is that a planning rule can be applied if
φ1, . . . ,φn are derivable from the agent’s beliefs, and ψ is derivable from the agent’s
goals. In addition we have to devise proof conditions, similar in nature to that we have
presented for goal generation, which enable us to deal with both complete plans and
partial plans, and how to compose them. These issues are left as matter for future re-
search.

References

1. G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. A flexible framework for de-
feasible logics. In Proc. AAAI-2000, Menlo Park, CA, 2000. AAAI/MIT Press.

2. F.M.T. Brazier, B. Dunin Keplicz, N. Jennings, and J. Treur. Desire: Modelling multi-agent
systems in a compositional formal framework. Int. J. Coop. Inf. Syst., 6:67–94, 1997.

3. G. Brewka, S. Benferhat, and D. Le Berre. Qualitative choice logic. Artificial Intelligence,
157:203–237, 2004.

4. J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre. Goal generation in the BOID
architecture. Cog. Sc. Quart., 2(3-4):428–447, 2002.

5. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent deliberation. In Proc.
AAMAS’03. 2003.

6. M. Dastani and L.W.N. van der Torre. Programming BOID-plan agents: Deliberating about
conflicts among defeasible mental attitudes and plans. In Proc. AAMAS 2004, New York,
2004. ACM.

7. M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A programming language for
cognitive agents: Goal directed 3APL. In Proc. ProMAS’03. 2003.

8. G. Governatori and A. Rotolo. A Gentzen system for reasoning with contrary-to-duty obliga-
tions. In A. Jones and J. Horty, editors, Proc. ∆eon’02, London, May 2002. Imperial College.

9. G. Governatori and A. Rotolo. Defeasible logic: Agency, intention and obligation. In A. Lo-
muscio and D. Nute, editors, Proc. ∆eon’04, Berlin, 2004. Springer.

http://eprint.uq.edu.au/archive/00002116/01/aaai2000.pdf
http://eprint.uq.edu.au/archive/00002116/01/aaai2000.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00002196/01/deon04.pdf

