
Modeling Stable Matching Problems

with Answer Set Programming

Sofie De Clercqa, Steven Schockaertb, Martine De Cocka & Ann Nowéc

a Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Krijgslaan 281,

9000 Ghent, Belgium {Sofier.DeClercq,Martine.DeCock}@ugent.be
b School of Computer Science & Informatics, Cardiff University, 5 The Parade, Roath, Cardiff CF24 3AA,

United Kingdom S.Schockaert@cs.cardiff.ac.uk
c Computational Modeling Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

ANowe@vub.ac.be

The final publication is available at

link.springer.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55740258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling Stable Matching Problems with Answer Set

Programming∗

Sofie De Clercqa, Steven Schockaertb, Martine De Cocka, and Ann Nowéc

a
Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium

{Sofier.DeClercq,Martine.DeCock}@ugent.be

b
School of Computer Science & Informatics, Cardiff University, 5 The Parade, Roath, Cardiff CF24 3AA, United Kingdom

S.Schockaert@cs.cardiff.ac.uk

c
Computational Modeling Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

ANowe@vub.ac.be

Abstract

The Stable Marriage Problem (SMP) is a well-known matching problem first introduced and
solved by Gale and Shapley [7]. Several variants and extensions to this problem have since been
investigated to cover a wider set of applications. Each time a new variant is considered, however,
a new algorithm needs to be developed and implemented. As an alternative, in this paper we
propose an encoding of the SMP using Answer Set Programming (ASP). Our encoding can easily
be extended and adapted to the needs of specific applications. As an illustration we show how
stable matchings can be found when individuals may designate unacceptable partners and ties
between preferences are allowed. Subsequently, we show how our ASP based encoding naturally
allows us to select specific stable matchings which are optimal according to a given criterion. Each
time, we can rely on generic and efficient off-the-shelf answer set solvers to find (optimal) stable
matchings.

Keywords: Answer Set Programming, Logic Rules, Stable Marriage Problem, Optimal Stable Matchings.

1 Introduction

The Stable Marriage Problem (SMP) is a matching problem first introduced and solved by Gale and
Shapley [7]. Starting from (i) a set of n men and n women, (ii) for each man a ranking of the
women as preferred partners, and (iii) for each woman a ranking of the men as preferred partners,
the SMP searches for a set of n couples (marriages) such that there are no man and woman who are
in different marriages but both prefer each other to their actual partners. Such a man and woman
are called a blocking pair and a matching without blocking pairs forms a stable set of marriages. Due
to its practical relevance, countless variants on the SMP have been investigated, making the problem

∗This research was funded by a Research Foundation-Flanders project.

2

assumptions more applicable to a wider range of applications, such as kidney-exchange [12] and the
hospital-resident problem [18]. Recently Roth and Shapley won the Nobel Prize for Economics for
their theory of stable allocations and the practice of market design, work that has directly resulted
from an application of the SMP.

In the literature, typically each time a new variant on the SMP is considered, a new algorithm is
developed (see e.g. [10, 13, 20]). In this paper, we propose to use Answer Set Programming (ASP)
as a general vehicle for modeling a large class of extensions and variations of the SMP. We show how
an ASP encoding allows us to express in a natural way ties in the preferences of men and women, as
well as unacceptability constraints (where certain people prefer to remain single over being coupled
to undesirable partners). Furthermore, we illustrate how we can use our ASP encoding to find stable
matchings that are optimal according to a certain criterion. Although the SMP has been widely
investigated, and efficient approximation or exact algorithms are available for several of its variants
(see e.g. [20]), to the best of our knowledge, our encoding offers the first exact implementation to find
sex-equal, minimum regret, egalitarian or maximum cardinality stable sets for SMP instances with
unacceptability and ties.

The paper is structured as follows. In Section 2 we give some background about the SMP and ASP.
We introduce our encoding of the SMP with ASP and prove its correctness in the third section. In
Section 4, we extend our encoding enabling it to find optimal stable sets. We explore several notions
of optimality for stable matchings and show how optimal stable matchings can be found by solving
the corresponding disjunctive ASP program. Finally we draw our conclusions.

2 Background

2.1 The Stable Marriage Problem

To solve the standard SMP, Gale and Shapley [7] constructed an iterative algorithm —known as the
Gale-Shapley algorithm, G-S algorithm or deferred-acceptance algorithm— to compute a particular
solution of an SMP instance. The algorithm works as follows: in round 1 every man proposes to his
first choice of all women. A woman, when being proposed, then rejects all men but her first choice
among the subset of men who proposed to her. That first choice becomes her temporary husband.
In the next rounds, all rejected men propose to their first choice of the subset of women by whom
they were not rejected yet, regardless of whether this woman already has a temporary husband. Each
woman, when being proposed, then rejects all men but her first choice among the subset of men
who just proposed to her and her temporary mate. This process continues until all women have a
husband. This point, when everyone has a partner, is always reached after a polynomial number of
steps and the corresponding set of marriages is stable [7]. It should be noted, however, that only one
of the potentially exponentially many stable matchings is found in this way. We formally define the
SMP and introduce two variants that will be considered in this paper. We denote a set of men as
M = {m1, . . . ,mn} and a set of women W = {w1, . . . , wp}, with n = p for the classical SMP. A set of
marriages is a set of man-woman pairs such that each man and each woman occurs in just one pair.

Definition 1 (Classical SMP)
An instance of the classical SMP is a pair (SM , SW), with SM = {σ1

M , . . . , σ
n
M} and SW = {σ1

W , . . . , σn
W }

sets of permutations of the integers 1, . . . , n. The permutations σi
M and σi

W are the preferences of man
mi and woman wi respectively. If σi

M (j) = k, we say that woman wk is the jth most preferred woman

for man mi, and similarly for σi
W (j) = k. Man m and woman w form a blocking pair in a set of

marriages S if m prefers w to his partner in S and w prefers m to her partner in S. A solution of
an instance is a stable set of marriages, i.e. a set of marriages without blocking pairs.

A first variant of the classical SMP allows men and women to point out unacceptable partners
by not including them in their preference list. The number of men n can differ from the number of
women p since men and women can remain single. A set of marriages is a set of singles (i.e. persons
paired to themselves) and man-woman pairs such that every man and woman occurs in just one pair.

Definition 2 (SMP with unacceptability)
An instance of the SMP with unacceptability is a pair (SM , SW), SM = {σ1

M , . . . , σ
n
M}, and SW =

{σ1
W , . . ., σp

W }, with each σi
M a permutation of a subset of {1, . . . , p} and each σj

W a permutation of
a subset of {1, . . . , n}. If σi

M (j) = k, woman wk is the jth most preferred woman for man mi, and
similarly for σi

W (j) = k. If there is no l such that σi
M (l) = j, woman wj is an unacceptable partner

for man mi, and similarly for no l such that σi
W (l) = j. A person x forms a blocking individual in a

set of marriages S if x prefers being single to being paired with his or her partner in S. A solution of
an instance is a stable set of marriages, i.e. a set of marriages without blocking pairs or individuals.

The length of the permutation σi
M is denoted as |σi

M |. A stable matching for an SMP instance
with unacceptability always exists and can be found in polynomial time [22] by a slightly modified
G-S algorithm.

Example 1
Suppose M = {m1,m2,m3}, W = {w1, w2, w3, w4}, SM = {σ1

M = (4, 1, 3), σ2
M = (3, 2), σ3

M = (1, 3)}
and SW = {σ1

W = (1, 3), σ2
W = (2), σ3

W = (3, 2), σ4
W = (2, 1)}. Hence woman w1 prefers man m1 to

man m3 while man m2 is unacceptable. In this setting, there is exactly one stable set of marriages [22]:
{(m1, w4), (m2, w3), (m3, w1), (w2, w2)}. Thus woman w2 stays single.

The second variant of the SMP allows unacceptability and ties, i.e. the preferences do not have to
be strict. For this variant there are several ways to define stability, but we will use the notion of weak
stability [11].

Definition 3 (SMP with unacceptability and ties)
An instance of the SMP with unacceptability and ties is a pair (SM , SW), SM = {σ1

M , . . . , σ
n
M} and

SW = {σ1
W , . . . , σp

W }. For every i ∈ {1, . . . , n}, σi
M is a list of disjoint subsets of {1, . . . , p}. Sym-

metrically σi
W is a list of disjoint subsets of {1, . . . , n} for every i ∈ {1, . . . , p}. We call σi

M and σi
W

the preferences of man mi and woman wi respectively. If k ∈ σi
M (j), woman wk is in man mi’s j

th

most preferred group of women. All the women in that group are equally preferred by mi. The case
k ∈ σi

W (j) is similar. If there is no l such that j ∈ σi
M (l), woman wj is an unacceptable partner for

man mi, and similar for no l such that j ∈ σi
W (l). For every k in the set1 σi

M (|σi
M |), man mi equally

prefers staying single to being paired to woman wk, and symmetrically for the preferences of a woman
wi. This is the only set in σi

M that might be empty, and similar for σi
W . Man m and woman w form

a blocking pair in a set of marriages S if m strictly prefers w to his partner in S and w strictly prefers
m to her partner in S. A blocking individual in S is a person who stricly prefers being single to being
paired to his partner in S. A solution of an instance is a weakly stable set of marriages, i.e. a set of
marriages without blocking pairs or individuals.

1|σi
M | denotes the length of the list σi

M .

A weakly stable matching always exists for an instance of the SMP with unacceptability and ties
and it can be found in polynomial time by arbitrarily breaking the ties [14]. However, as opposed to
the previous variant, the number of matched persons is no longer constant for every stable set in this
variant. Note that the setting of Definition 3 generalizes the setting of Definition 2, which generalizes
the setting of Definition 1. We introduce the notations

acceptableiM = σi
M (1) ∪ σi

M (2) ∪ . . . ∪ σi
M (|σi

M | − 1)︸ ︷︷ ︸
= preferred i

M

∪ σi
M (|σi

M |)︸ ︷︷ ︸
= neutraliM

Furthermore unacceptableiM = {1, . . . , p} \ acceptableiM . We define the ordening ≤mi

M on {wj | j ∈
acceptableiM} ∪ {mi} as x ≤mi

M y iff mi prefers person x at least as much as person y. The strict

ordening <mi

M is defined in the obvious way and analogous notations are used for σj
W .

Example 2
Suppose M = {m1, m2}, W = {w1, w2, w3, w4} and SM = {σ1

M = ({1, 3}, {4}), σ2
M = ({2, 3}, {})}.

Hence man m1 prefers women w1 and w3 to woman w4. There is a tie between woman w1 and w3

as well as between woman w4 and staying single. Woman w2 is unacceptable for man m1. Man m2

prefers woman w2 and w3 to staying single, but finds w1 and w4 unacceptable. It holds that w1 <
m1

M

m1, i.e. m1 prefers marrying w1 over staying single, acceptable1
M = {1, 3, 4}, preferred1

M = {1, 3},
neutral1M = {4} and unacceptable1

M = {2}.

2.2 Answer Set Programming

Answer Set Programming or ASP is a form of declarative programming [2]. Its transparence, elegance
and ability to deal with ΣP

2 -complete problems make it an attractive method for solving combinatorial
search and optimization problems. An ASP program is a finite collection of first-order rules

A1 ∨ . . . ∨Ak ← B1, . . . , Bm, notC1, . . . , notCn

with A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn predicates. The semantics are defined by the ground version
of the program, consisting of all ground instantiations of the rules w.r.t. the constants that appear in
it (see e.g. [2] for a good overview). This grounded program is a propositional ASP program. The
building blocks of these programs are atoms, literals and rules. The most elementary are atoms, which
are propositional variables that can be true or false. A literal is an atom or a negated atom. Beside
strong negation, ASP uses a special kind of negation, namely negation-as-failure (naf), denoted with
‘not’. For a literal a we call ‘not a’ the naf-literal associated with a. The extended literals consist of
all literals and their associated naf-literals. A disjunctive rule has the following form

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . , not cn

where a1, . . . , ak, b1, . . . , bm, c1, . . . , cn are literals from a fixed set L, determined by a fixed set A of
atoms. We call a1∨ . . .∨ak the head of the rule while the set of extended literals b1, . . . , bm, not c1, . . .,
not cn is called the body. The rule above intuitively encodes that a1, a2, . . . or ak is true when we
have evidence that b1, . . . , bm are true and we have no evidence that at least one of c1, . . . , cn are true.
When a rule has an empty body, we call it a fact ; when the head is empty, we speak of a constraint. A
rule without occurrences of not is called a simple disjunctive rule. A simple disjunctive ASP program
is a finite collection of simple disjunctive rules and similarly a disjunctive ASP program P is a finite
collection of disjunctive rules. If each rule head consists of at most one literal, we speak of a normal
ASP program.

We define an interpretation I of a disjunctive ASP program P as a subset of L. An interpretation I
satisfies a simple disjunctive rule a1∨. . .∨ak← b1, . . . , bm when a1 ∈ I∨. . .∨ak ∈ I or {b1, . . . , bm} 6⊆ I.
An interpretation which satisfies all rules of a simple disjunctive program is called a model of that
program. An interpretation I is an answer set of a simple disjunctive program P iff it is a minimal
model of P, i.e. no strict subset of I is a model of P [9]. The reduct PI of a disjunctive ASP program
P w.r.t. an interpretation I is defined as the simple disjunctive ASP program PI = {a1 ∨ . . . ∨ ak ←
b1, . . . , bm | (a1 ∨ . . .∨ak ← b1, . . . , bm, not c1, . . . , not cn) ∈ P, {c1, . . . , cn}∩ I = ∅}. An interpretation
I of a disjunctive ASP program P is an answer set of P iff I is an answer set of PI .

Example 3
Let P be the ASP program with the following 4 rules:

man(john)←, person(john)←, person(fiona)←
woman(X) ∨ child(X)← person(X), notman(X)

The last rule is grounded to 2 rules in which X is resp. replaced by john and by fiona. We check
that the interpretation I = {man(john), woman(fiona), person(john), person(fiona)} is an answer
set of the ground version of P by computing the reduct. The grounded rule with X = john is deleted
since man(john) is in I. The reduct PI is:

man(john)←, person(john)←, person(fiona)←
woman(fiona) ∨ child(fiona)← person(fiona)

The first 3 rules are facts, hence their heads will be in any answer set. The fourth rule encodes that
any person who is not a man, is a woman or child. It is clear that I is a minimal model of this simple
program, so I is an answer set of P. By replacing woman(fiona) by child(fiona) in I, another answer
set is obtained.

To automatically compute the answer sets of the programs in this paper, we have used the ASP
solver DLV2, due to its ability to handle predicates, disjunction and numeric values (with some built-in
aggregate functions). The numeric values are only used for grounding.

3 Modeling the Stable Marriage Problem in ASP

In this section we model variations and generalizations of the SMP with ASP. A few proposals of
using nonmonotonic reasoning for modeling the SMP have already been described in the literature.
For instance in [19] a specific variant of the SMP is mentioned (in which boys each know a subset of
a set of girls and want to be matched to a girl they know) and in [4] an abductive program is used to
find a stable set of marriages in which two fixed persons are paired, with strict, complete preference
lists. To the best of our knowledge, beyond a few specific examples, no comprehensive study has been
made of using ASP or related paradigms in this context. In particular, the generality of our ASP
framework for weakly stable sets of SMP instances with unacceptablity and/or ties is a significant
advantage. The expression accept(m,w) denotes that a man m and a woman w accept each other
as partners. The predicate manpropose(m,w) expresses that man m is willing to propose to woman
w and analogously womanpropose(m,w) expresses that woman w is willing to propose to man m.
Inspired by the Gale-Shapley algorithm, we look for an ASP formalisation to find the stable sets.

2Available from www.dlvsystems.com

Definition 4 (ASP program induced by SMP with unacc. and ties)
The ASP program P induced by an instance ({σ1

M , . . . , σ
n
M}, {σ1

W , . . . , σp
W }) of the classical SMP with

unacceptability and ties is the program containing for every i ∈ {1, . . . , n}, j ∈ {1, . . . , p} the following
rules:

accept(mi, wj)← manpropose(mi, wj), womanpropose(mi, wj) (1)

accept(mi,mi)← {not accept(mi, wk) | k ∈ acceptableiM} (2)

accept(wj , wj)← {not accept(mk, wj) | k ∈ acceptablejW } (3)

and for every i ∈ {1, . . . , n}, j ∈ acceptableiM :

manpropose(mi, wj)← {not accept(mi, x) |x ≤mi

M wj and wj 6= x} (4)

and for every j ∈ {1, . . . , p}, i ∈ acceptablejW :

womanpropose(mi, wj)← {not accept(x,wj) |x ≤
wj

W mi and mi 6= x} (5)

Intuitively (1) means that a man and woman accept each other as partners if they propose to each
other. Due to (2), a man accepts himself as a partner (i.e. stays single) if no woman in his preference
list is prepared to propose to him. Rule (4) states that a man proposes to a woman if he is not paired
to a more or equally preferred woman. For j ∈ neutraliM the body of (4) contains not accept(mi,mi).
No explicite rules are stated about the number of persons someone can propose to or accept but
Proposition 1 implies that this is unnecessary.

We illustrate the induced ASP program with an example.

Example 4
Consider the following instance (SM , SW) of the SMP with unacceptability and ties. Let M =
{m1,m2} and W = {w1, w2, w3}. Furthermore:

σ1
M = ({1}, {2, 3}, {})
σ2
M = ({2}, {1})
σ1
W = ({1, 2}, {})
σ2
W = ({1}, {})
σ3
W = ({2}, {1}, {})

The ASP program induced by this SMP instance is:

man(m1)←, man(m2)←
woman(w1)←, , woman(w2)←, woman(w3)←
accept(X,Y)← manpropose(X,Y), womanpropose(X,Y),man(X), woman(Y)

manpropose(m1, w1)←
manpropose(m1, w2)← not accept(m1, w1), not accept(m1, w3)

manpropose(m1, w3)← not accept(m1, w1), not accept(m1, w2)

accept(m1,m1)← not accept(m1, w1), not accept(m1, w2), not accept(m1, w3)

manpropose(m2, w2)←
manpropose(m2, w1)← not accept(m2, w2), not accept(m2,m2)

accept(m2,m2)← not accept(m2, w2), not accept(m2, w1)

womanpropose(m1, w1)← not accept(m2, w1)

womanpropose(m2, w1)← not accept(m1, w1)

accept(w1, w1)← not accept(m1, w1), not accept(m2, w1)

womanpropose(m1, w2)←
accept(w2, w2)← not accept(m1, w2)

womanpropose(m2, w3)←
womanpropose(m1, w3)← not accept(m2, w3)

accept(w3, w3)← not accept(m1, w3), not accept(m2, w3)

Notice that we use the facts man and woman to capture all the rules of the form (1) at once. If we
run this program in DLV, we get three answer sets containing respectively:

• {accept(m1, w3), accept(m2, w1), accept(w2, w2)},

• {accept(m1, w2), accept(m2, w1), accept(w3, w3)},

• {accept(m1, w1), accept(m2,m2), accept(w2, w2), accept(w3, w3)}.

These correspond to the three weakly stable set of marriages of this SMP instance, namely {(m1, w3),
(m2, w1), (w2, w2)}, {(m1, w2), (m2, w1), (w3, w3)} and {(m1, w1), (m2,m2), (w2, w2), (w3, w3)}.

Proposition 1
Let (SM , SW) be an instance of the SMP with unacceptability and ties and let P be the corresponding
ASP program. If I is an answer set of P, then a weakly stable matching for (SM , SW) is given by
{(x, y) | accept(x, y) ∈ I}.

Proof. Let (SM , SW) and P be as described in the proposition. Because of the symmetry between the
men and the women we restrict ourselves to the male case when possible. We prove this proposition
in 4 steps.

1. For every i ∈ {1, . . . , n}, every j ∈ {1, . . . , p} and for every answer set I of P, it holds that
accept(mi, wj) ∈ I implies that j ∈ acceptableiM and i ∈ acceptablejW .
This can be proved by contradiction. We will prove that for every man mi and every j ∈
unacceptableiM , accept(mi, wj) is in no answer set I of the induced ASP program P. For
accept(mi, wj) to be in an answer set I, the reduct must contain some rule with this literal in
the head and a true body. The only rule which can make this happen is the one of the form (1),
implying that manpropose(mi, wj) should be in I. But since j is not in acceptableiM there is no
rule with manpropose(mi, wj) in the head and so manpropose(mi, wj) can never be in I.

2. For every answer set I of P and every man mi, there exists at most one woman wj such that
accept(mi, wj) ∈ I. Similarly, for every woman wj there exists at most one man mi such that
accept(mi, wj) ∈ I. Moreover, if accept(mi,mi) ∈ I then accept(mi, wj) /∈ I for any wj, and
likewise when accept(wj , wj) ∈ I then accept(mi, wj) /∈ I for any mi.
This can be proved by contradiction. Suppose first that there is an answer set I of P that
contains accept(mi, wj) and accept(mi, wj′) for some man mi and two different women wj and
wj′ . The first step implies that j and j′ are elements of acceptableiM . Either man mi prefers
woman wj to woman wj′ (wj ≤mi

M wj′) or the other way around (wj′ ≤mi

M wj) or man mi has

no preference among them (wj ≤mi

M wj′ and wj′ ≤mi

M wj). The first two cases are symmetrical
and can be handled analogously. The last case follows from the first case because it has stronger
assumptions. We prove the first case and assume that man mi prefers woman wj to woman wj′ .
The rules (4) imply the presence of a rule manpropose(mi, wj′) ← . . ., not accept(mi, wj), . . .
and this is the only rule which can make manpropose(mi, wj′) true (the only rule with this
literal in the head). However, since accept(mi, wj) is also in the answer set, this rule has a false
body so manpropose(mi, wj′) can never be in I. Consequently accept(mi, wj′) can never be in
I since the only rule with this literal in the head is of the form (1) and this body can never be
true, which leads to a contradiction.
Secondly assume that accept(mi, wj) and accept(mi,mi) are both in an answer set I of P.
Again step 1 implies that j ∈ acceptableiM . Because of the rules (2) P will contain the rule
accept(mi,mi) ← . . . , not accept(mi, wj), An analogous reasoning as above implies that
since accept(mi, wj) is in the answer set I, accept(mi,mi) can never be in I.

3. For every man mi, in every answer set I of P exactly one of the following conditions is satisfied :

(a) there exists a woman wj such that accept(mi, wj) ∈ I,

(b) accept(mi,mi) ∈ I,

and similarly for every woman wi.
Suppose I is an arbitrary answer set of P and mi is an arbitrary man. We already know from
step 2 that a man cannot be paired to a woman while being single, so both possibilities are
disjoint. So suppose there is no woman wj such that accept(mi, wj) is in I. P will contain the
rule (2). Because of our assumptions and the definition of the reduct, this rule will be reduced
to accept(mi,mi)←, and so accept(mi,mi) will be in I.

4. For an arbitrary answer set I of P the previous steps imply that I produces a set of marriages
without blocking individuals. Weak stability also demands the absence of blocking pairs. Sup-
pose by contradiction that there is a blocking pair (mi, wj), implying that there exist i 6= i′ and
j 6= j′ such that accept(mi, wj′) ∈ I and accept(mi′ , wj) ∈ I while wj <

mi

M wj′ and mi <
wj

W mi′ .
The rules of the form (1), the only ones with the literals accept(mi, wj′) and accept(mi′ , wj)
in the head, imply that literals manpropose(mi, wj′) and womanpropose(mi′ , wj) should be
in I. But since wj <mi

M wj′ and because of the form of the rules (4) there are fewer con-
ditions to be fulfilled for manpropose(mi, wj) to be in I than for manpropose(mi, wj′) to
be in I. So manpropose(mi, wj) should be in I as well. A similar reasoning implies that
womanpropose(mi, wj) should be in I. But now the rules of the form (1) imply that accept(mi, wj)
should be in I, contradicting step 2 since accept(mi, wj′) and accept(mi′ , wj) are already in I.

Proposition 2
Let (SM , SW) be an instance of the SMP with unacceptability and ties, and let P be the corresponding
ASP program. If {(x1, y1), . . ., (xk, yk)} is a weakly stable matching for (SM , SW) then P has the
following answer set I:

{manpropose(xi, y) | i ∈ {1, . . . , k}, xi ∈M,y <xi

M yi)}
∪{womanpropose(x, yi) | i ∈ {1, . . . , k}, yi ∈W,x <yi

W xi}

∪{accept(xi, yi) | i ∈ {1, . . . , k}}
∪{manpropose(xi, yi) | i ∈ {1, . . . , k}, xi 6= yi}
∪{womanpropose(xi, yi) | i ∈ {1, . . . , k}, xi 6= yi}

Proof. Suppose we have a stable set of marriages S = {(x1, y1), . . . , (xk, yk)}, implying that every
yi is an acceptable partner of xi and the other way around. The rules of the form (1) do not alter
when forming the reduct, but the other rules do as those contain naf-literals. Notice first that the
stability of S implies that there cannot be an unmarried couple (m,w), with m a man and w a
woman, such that manpropose(m,w) is in I and womanpropose(m,w) is in I. By definition of I this
would mean that they both strictly prefer each other to their current partner in S. This means they
would form a blocking pair, but since S was stable, that is impossible. So the rules of the form (1)
will be applied exactly for married couples (mi, wj), since by definition of I manpropose(mi, wj) and
womanpropose(mi, wj) are both in I under these conditions. For other cases the rule will also be
fulfilled since the body will be false. This reasoning implies that the unique minimal model of the
reduct w.r.t. I should indeed contain accept(mi, wj) for every married couple (mi, wj) in S. Since S
is a stable set of marriages, every person is either married or single. If a man mi is single, there will
be no other literal of the form accept(mi, .) in I, so rule (2) will reduce to a fact accept(mi,mi) ←,
which is obviously fulfilled by I. Similarly if a woman wj is single. Any other rule of the form (2) or
(3) is deleted because mi or wj is not single in that case and thus there is some literal of the form
accept(mi, w) for some woman w and some literal of the form accept(m,wj) for some man m in I,
falsifying the body of the rules. If mi is single, then accept(mi,mi) is in I and this is the only literal
of the form accept(mi, .) in I, so the rules of the form (4) will all be reduced to facts. The rule heads
of these facts should be in the minimal model of the reduct and are indeed in I since the women w for
which manpropose(mi, w) is in I are exactly those who are strictly preferred to staying single. The
rules of the form (4) for women wj in neutraliM will all be deleted in this case, because accept(mi,mi)
is in I. If man mi is married to a certain woman wj in the stable set S then the rules of the form (4)
will reduce to facts of the form manpropose(mi, w)← for every woman w who is strictly preferred to
wj and will be deleted for every other woman appearing in the head, because those rules will contain
not accept(mi, wj) in the body. Again I contains these facts by definition, as the minimal model of the
reduct should. We can use an analogous reasoning for the women. So the presence of the literals of
the form manpropose(., .), womanpropose(., .) and accept(., .) in I is required in the unique minimal
model of the reduct w.r.t. I. We have proved that every literal in I should be the minimal model of
the reduct and that every rule of the reduct is fulfilled by I, implying that I is an answer set of P.

In [18] it is shown that the decision problem ‘is the pair (m,w) stable?’ for a given SMP instance
with unacceptablity and ties is an NP-complete problem, even in the absence of unacceptability. A
pair (m,w) is stable if there exists a stable set that contains (m,w). It is straightforward to see that
we can reformulate this decision problem as ‘does there exist an answer set of the induced normal
ASP program P which contains the literal accept(m,w)?’ (i.e. brave reasoning), which is known to
be an NP-complete problem [1]. So our model forms a suitable framework for these kind of decision
problems concerning the SMP.

4 Selecting Preferred Stable Sets

4.1 Notions of Optimality of Stable Sets

When several stable matchings can be found for an instance of the SMP, some may be more interesting
than others. The stable set found by the G-S algorithm is M-optimal [22], i.e. every man likes this set
at least as well as any other stable set. Exchanging the roles of men and women in the G-S algorithm
yields a W-optimal stable set [7], optimal from the point of view of the women.

While some applications may require us to favour either the men or the women, in others it makes
more sense to treat both parties equally. To formalize some commonly considered notions of fairness
and optimality w.r.t. the SMP, we define the cost cx(S) of a stable set S to an individual x, where
cx(S) = k if x has been matched with his or her kth preferred partner. More precisely, for x = mi a
man, we define cmi

(S) = |{z : z <mi

M y}|+ 1 where y is the partner of x in S; for x = wj a woman, cx
is defined analogously. So in case of ties we assign the same list position to equally preferred partners,
as illustrated in Example 5.

Example 5
Let x = m1 be a man with preference list σ1

M = ({1}, {2, 3}, {4}) then w1 as partner of x in some set
of marriages S would yield cx(S) = 1, w2 and w3 yield cx(S) = 2 and w4 yields cx(S) = 4. If m1

would be single in S, then the cost cx(S) is 4, since m1 prefers women w1, w2 and w3 to being single,
but is indifferent between being paired to w4 or staying single.

Definition 5
For S a set of marriages,

• the sex-equalness cost is defined as csexeq(S) = |
∑

x∈M cx(S)−
∑

x∈W cx(S)|,

• the egalitarian cost is defined as cweight(S) =
∑

x∈M∪W cx(S),

• the regret cost is defined as cregret(S) = maxx∈M∪W cx(S), and

• the cardinality cost is defined as csingles(S) = |{z : (z, z) ∈ S}|.

S is a sex-equal stable set iff S is a stable set with minimal sex-equalness cost. Similarly, S is an
egalitarian (resp. minmum regret, maximum cardinality) stable set iff S is a stable set with minimal
egalitarian (resp. regret or cardinality) cost.

A sex-equal stable set assigns an equal importance to the preferences of the men and women. An
egalitarian stable set is a stable set in which the preferences of every individual are considered to
be equally important. In [23] the use of an egalitarian stable set is proposed to optimally match
virtual machines (VM) to servers in order to improve cloud computing by equalizing the importance
of migration overhead in the data center network and VM migration performance. A minimum regret
stable set is optimal for the person who is worst off. A maximal or minimal cardinality stable set
is a stable set with resp. as few or as many singles as possible. Examples of practical applications
include an efficient kidney exchange program [21] and the National Resident Matching Program3 [18].
Maximizing cardinality garantuees that as many donors as possible will get a compatible donor and
as many medical graduates as possible will get a position.

3www.nrmp.org

Table 1 presents an overview of known complexity results4 concerning finding an optimal stable
set. Typically the presence of ties leads to an increase of complexity. Manlove et al. [17, 18] proved
that the problem of finding a maximum (or minimum) cardinality stable set for a given instance of the
SMP with unacceptability and ties is NP-hard. Using this result, the problem of finding an egalitarian
or minimum regret stable matching for a given SMP instance with ties is proved to be NP-hard [18],
even if the ties occur on one side only and each tie is of length 2 (i.e. each set in a preference list has
size at most 2). If there are no ties, the problem of finding an egalitarian or minimum regret stable set
is solvable in polynomial time [13, 10]. Since all stable sets consist of n couples in the classical SMP,
the G-S algorithm trivially finds a maximum (or minimum) cardinality [7]. For an SMP instance
with unacceptability the number of couples in a stable set is constant [8], so finding a maximum
cardinality stable set reduces to finding a stable set, which is known to be solvable in polynomial
time. Surprisingly, finding a sex-equal stable set for a classical SMP instance is NP-hard [16], even if
the preference lists are bound in length by 3 [20].

Table 1: Literature complexity results for finding an optimal stable set

sex-equal egalitarian min. regret max. card.
SMP NP-hard [16] P (O(n4) [13]) P (O(n2) [10]) P (O(n2) [7])

SMP + unacc NP-hard [20] P [8]
SMP + ties NP-hard [18] NP-hard [18]

SMP + {unacc,ties} NP-hard [17, 18]

Between brackets we mention in Table 1 the complexity of an algorithm that finds an optimal
stable set if one exists, in function of the number of men n. To the best of our knowledge, the
only exact algorithm tackling an NP-hard problem from Table 1 finds a sex-equal stable set for an
SMP instance in which the strict preference lists of men and/or women are bounded in length by
a constant [20]. To the best of our knowledge, no exact implementations exist to find an optimal
stable set for an SMP instance with ties, regardless of the presence of unacceptability and regardless
which notion of optimality from Table 1 is used. Our approach yields an exact implementation of all
problems mentioned in Table 1.

4.2 Finding Optimal Stable Sets using Disjunctive ASP

As we discuss next, we can extend our ASP encoding of the SMP such that the optimal stable sets
correspond to the answer sets of an associated ASP program. In particular, we use a saturation
technique [5, 1] to filter non-optimal answer sets. Intuitively, the idea is to create a program with
3 components: (i) a first part describing the solution candidates, (ii) a second part also describing
the solution candidates since comparison of solutions requires multiple solution candidates within the
same answer set whereas the first part in itself produces one solution per answer set, (iii) a third
part comparing the solutions described in the first two parts and selecting the preferred solutions by
saturation. It is known that the presence of negation-as-failure can cause problems when applying
saturation. Therefore, we use a SAT encoding [15] of the ASP program in Definition 4 and define a

4Throughout this paper we assume that P 6= NP.

disjunctive naf-free ASP program in Definition 6 which selects particular models of the SAT problem.
Notice that our original normal program is absolutely tight, i.e. there is no finite sequence l1, l2, . . .
of literals such that for every i there is a program rule for which li+1 is a positive body literal and
li is in the head [6]. We use the completion and a translation of our ASP program to SAT to derive
Definition 6. The completion of a normal ASP program is a set of propositional formulas. For every
atom a with a ← bodyi (i ∈ {1, . . . , k}) all the program rules with head a, the propositional formula
a ≡ body′1 ∨ . . . ∨ body′k is in the completion of that program. If an atom a of the program does not
occur in any rule head, than a ≡⊥ is in the completion of the program. Similarly the completion of
the program contains the propositional formula ⊥≡ body′1 ∨ . . . ∨ body′l with ← bodyi (i ∈ {1, . . . , l})
all the program constraints. For every i, body′i is the conjunction of literals derived from bodyi by
replacing every occurence of ‘not’ with ‘¬’. Because our program is absolutely tight, we know that
the completion will correspond to it [6]. Applied to the induced normal ASP program in Definition
4, the completion becomes:

{accept(mi, wj) ≡ manpropose(mi, wj) ∧ womanpropose(mi, wj) | i ∈ {1, . . . , n}, j ∈ {1, . . . , p}}

∪{accept(mi,mi) ≡
∧

k∈acceptableiM

¬accept(mi, wk) | i ∈ {1, . . . , n}}

∪{accept(wj , wj) ≡
∧

k∈acceptablejW

¬accept(mk, wj) | j ∈ {1, . . . , p}}

∪{manpropose(mi, wj) ≡
∧

x≤mi
M wj ,x 6=wj

¬accept(mi, x) | i ∈ {1, . . . , n}, j ∈ acceptableiM}

∪{womanpropose(mi, wj) ≡
∧

x≤
wj
W mi,x 6=mi

¬accept(x,wj) | j ∈ {1, . . . , p}, i ∈ acceptablejW }

∪{manpropose(mi, wj) ≡⊥ | i ∈ {1, . . . , n}, j ∈ unacceptableiM}
∪{womanpropose(mi, wj) ≡⊥ | j ∈ {1, . . . , p}, i ∈ unacceptablejW }

Using the formulas of the completion corresponding to the normal ASP program in Definition 4, we
can define a corresponding disjunctive ASP program without negation-as-failure. Lemma 3 follows
form the fact that the completion corresponds to the original program [6].

Definition 6 (Induced disj. naf-free ASP program)
The disjunctive naf-free ASP program Pdisj induced by an SMP instance (SM , SW) with unacceptability
and ties contains the following rules for i ∈ {1, . . . , n}, j ∈ {1, . . . , p}:

¬accept(mi, wj) ∨manpropose(mi, wj)←
¬accept(mi, wj) ∨ womanpropose(mi, wj)←

accept(mi, wj) ∨ ¬manpropose(mi, wj) ∨ ¬womanpropose(mi, wj)←
For every i ∈ {1, . . . , n}, l ∈ unacceptableiM , j ∈ acceptableiM , x ≤mi

M wj , x 6= wj Pdisj contains:∨
k∈acceptableiM

accept(mi, wk) ∨ accept(mi,mi)←

¬accept(mi,mi) ∨ ¬accept(mi, wj)←
¬manpropose(mi, wj) ∨ ¬accept(mi, x)←

∨
x≤mi

M wj ,x 6=wj

accept(mi, x) ∨manpropose(mi, wj)←

¬manpropose(mi, wl)←
and symmetrical for j ∈ {1, . . . , p} and womanpropose.

Lemma 3
Let P be the normal ASP program from Definition 4 and Pdisj the disjunctive ASP program from
Definition 6. It holds that for any answer set I of P there exists an answer set Idisj of Pdisj such that
the atoms of I and Idisj coincide. Conversely for any answer set Idisj of Pdisj there exists an answer
set I of P such that the atoms of I and Idisj coincide.

4.3 ASP Program to Select Optimal Solutions

Let (SM , SW) be an SMP instance with unacceptability and ties, with SM = {σ1
M , . . . , σ

n
M} and

SW = {σ1
W , . . . , σp

W }, and let Pnorm be the induced normal ASP program from Definition 4. Our
technique for extending this program to a program that can respectively optimize for the sex-equalness,
egalitarian, minimum regret and maximum cardinality criterion is in each case very similar. We start
by explaining it for the case of sex-equalness. Our first step is to add a set of rules that compute the
sex-equalness cost of a set of marriages. For every man mi and every woman wj such that j ∈ σi

M (k)
we use the following rule to determine the cost for mi if wj would be his partner:

mancost(i, k)← accept(mi, wj) (6)

and similarly for every wj and every mi such that i ∈ σj
W (k):

womancost(j, k)← accept(mi, wj) (7)

We also use the following rules with i ranging from 1 to n and j from 1 to p:

mancost(i, |σi
M |)← accept(mi,mi) (8)

womancost(j, |σj
W |)← accept(wj , wj) (9)

manweight(Z)← #sum{B,A : mancost(A,B)} = Z,#int(Z) (10)

womanweight(Z)← #sum{B,A : womancost(A,B)} = Z,#int(Z) (11)

sexeq(Z)← manweight(X), womanweight(Y), Z = X − Y
sexeq(Z)← manweight(X), womanweight(Y), Z = Y −X (12)

Rules (8) and (9) state staying single leads to the highest cost. Rule (10) determines the sum of
the male costs5 and similarly (11) determines the sum of the female costs. According to Definition
5 the absolute difference of these values yields the sex-equalness cost, as determined by rules (12).
Since numeric variables are restricted to positive integers in DLV, we omit conditions as ‘X ≥ Y ’ or
‘X < Y ’. The program Pnorm extended with rules (6) – (12) is denoted Psexeq

ext . We construct a
program Psexeq, composed by subprograms, that selects optimal solutions. Let P ′disj be the disjunctive
naf-free ASP program, induced by the same SMP instance, in which a prime symbol is added to all
literal names (e.g. accept becomes accept′). Define a new program P ′sexeqext with all the rules of P ′disj in

5#sum, #max, #int and #count are DLV aggregate functions. The ‘A’ mentioned as variable in #sum indicates
that a cost must be included for every person (otherwise the cost is included only once when persons have the same
cost).

which every occurrence of ¬atom is changed into natom for every atom atom, i.e. replace all negation
symbols by a prefix ‘n’. For every occurring atom atom in P ′sexeqext , add the following rule to exclude
non-consistent solutions6:

sat← atom, natom (13)

Finally add rules (6) – (12) with prime symbols to the literal names to P ′sexeqext but replace rule (10)
and rule (11) by:

mansum(n,X)← mancost(n,X)

mansum(J, Z)← mansum(I,X),mancost(J, Y), Z = X + Y,#succ(J, I)

manweight(Z)← mansum(1, Z)

womansum(p,X)← womancost(p,X)

womansum(J, Z)← womansum(I,X), womancost(J, Y), Z = X + Y,#succ(J, I)

womanweight(Z)← womansum(1, Z) (14)

The DLV aggregate function #succ(J, I) is true whenever J + 1 = I. The reason we replace the rules
with the aggregate function #max by these rules is to make sure the saturation happens correct. When
saturation is used, the DLV aggregate function #max, #sum and #count would not yield the right
criteriumvalues. Moreover, DLV does not accept these aggregate function in saturation because of the
cyclic dependency of literals within the aggragate functions created by the rules for saturation. These
adjusted rules, however, will do the job because of the successive way they compute the criteriumvalues.
This becomes more clear in the proof of Proposition 4. We define the ASP program Psexeq as the union
of Psexeq

ext , P ′sexeqext and Psat. The ASP program Psat contains the following rules to select minimal
solutions based on sex-equalness:

sat← sexeq(X), sexeq′(Y), X ≤ Y (15)

← not sat (16)

mancost′(X,Y)← sat,manargcost′1(X),manargcost′2(Y)

womancost′(X,Y)← sat, womanargcost′1(X), womanargcost′2(Y) (17)

manpropose′(X,Y)← sat,man(X), woman(Y)

womanpropose′(X,Y)← sat,man(X), woman(Y)

accept′(X,X)← sat,man(X)

accept′(X,X)← sat, woman(X)

accept′(X,Y)← sat,man(X), woman(Y) (18)

and analogous to (18) a set of rules with prefix ‘n’ for the head predicates. Finally we add the facts7

manargcost′1(1..n)←, manargcost′2(1..(p+ 1))←, womanargcost′1(1..p)←, womanargcost′2(1..(n+
1)) ←, man(x) ← for every man x and woman(x) ← for every woman x to Psat. Intuitively the
rules of Psat express the key idea of saturation. First every answer set is forced to contain the atom
sat by rule (16). Then the rules (17) – (18) and the facts make sure that any answer set should
contain all possible literals with a prime symbol that occur in Psexeq. Rule (15) will establish that
only optimal solutions will correspond to minimal models and thus lead to answer sets. For any

6For instance, sat← accept′(m1, w1), naccept′(m1, w1)
7The rule manargcost′1(1..n)← is DLV-syntax for the n facts manargcost′1(1)←, . . . ,manargcost′1(n)←.

non-optimal solution, the corresponding interpretation containing sat will never be a minimal model
of the reduct. It is formally proved in Proposition 4 below that Psexeq produces exactly the stable
matchings with minimal sex-equalness cost.

Furthermore, only small adjustments to Psexeq are needed to create programs Pweight, Pregret,
and Psingles that resp. produce egalitarian, minimum regret and maximum cardinality stable sets.
Indeed, the ASP program Pweight can easily be defined as Psexeq in which the predicates sexeq and
sexeq′ are resp. replaced by weight and weight′ and the rules (12) are replaced by (19), determining
the egalitarian cost of Definition 5 as the sum of the male and female costs:

weight(Z)← manweight(X), womanweight(Y), Z = X + Y (19)

Similarly the ASP program Pregret is defined as Psexeq in which the predicates sexeq and sexeq′

are resp. replaced by regret and regret′ and rules (10) – (12) are replaced by the following rules:

manregret(Z)← #max{B : mancost(A,B)} = Z,#int(Z) (20)

womanregret(Z)← #max{B : womancost(A,B)} = Z,#int(Z) (21)

regret(X)← manregret(X), womanregret(Y), X > Y

regret(Y)← manregret(X), womanregret(Y), X ≤ Y (22)

Rule (20) determines the regret cost but only for the men. Similarly (21) determines the regret cost for
the women. The regret cost as defined in Definition 5 is the maximum of these two values, determined
by the rules in (22). Again we adjust rules (20) and (21) for the program part P ′regretext by replacing
them with a successively computing variant:

manmax(n,X)← mancost(n,X)

manmax(J,X)← manmax(I,X),mancost(J, Y), X ≥ Y,#succ(J, I)

manmax(J, Y)← manmax(I,X),mancost(J, Y), X < Y,#succ(J, I)

manregret(Z)← manmax(1, Z)

womanmax(p,X)← womancost(p,X)

womanmax(J,X)← womanmax(I,X), womancost(J, Y), X ≥ Y,#succ(J, I)

womanmax(J, Y)← womanmax(I,X), womancost(J, Y), X < Y,#succ(J, I)

womanregret(Z)← womanmax(1, Z) (23)

Finally we define the ASP program Psingles as Psexeq in which the predicates sexeq and sexeq′ are
resp. replaced by singles and singles′. Furthermore we replace rules (6) – (12) by (24), determining
the number of singles:

singles(Z)← #count{B : accept(B,B)} = Z,#int(Z) (24)

This time we adjust rule (24) for the program part P ′singlesext as follows:

single(p+ i, 1)← accept(mi,mi)

single(p+ i, 0)← naccept(mi,mi)

single(j, 1)← accept(wj , wj)

single(j, 0)← naccept(wj , wj)

singlesum(n+ p,X)← single(n+ p,X)

singlesum(J, Z)← singlesum(I,X), single(J, Y), Z = X + Y,#succ(J, I)

singles(Z)← sat, singlesum(1, Z) (25)

Example 6
We reconsider Example 4. This SMP instance had 3 stable sets of marriages:

• S1 = {accept(m1, w3), accept(m2, w1), accept(w2, w2)},

• S2 = {accept(m1, w2), accept(m2, w1), accept(w3, w3)},

• S3 = {accept(m1, w1), accept(m2,m2), accept(w2, w2), accept(w3, w3)}.

It is easy to compute the respective regret costs as cregret(S1) = 2 and cregret(S2) = cregret(S3) = 3.
The corresponding program selecting this minimum regret stable set is the program consisting of the
rules in Example 4 in addition with:

mancost(1, 1)← accept(m1, w1)

mancost(1, 2)← accept(m1, w2)

mancost(1, 2)← accept(m1, w3)

mancost(1, 3)← accept(m1,m1)

mancost(2, 2)← accept(m2, w1)

mancost(2, 1)← accept(m2, w2)

mancost(2, 2)← accept(m2,m2)

womancost(1, 1)← accept(m1, w1)

womancost(1, 1)← accept(m2, w1)

womancost(1, 2)← accept(w1, w1)

womancost(2, 1)← accept(m1, w2)

womancost(2, 2)← accept(w2, w2)

womancost(3, 2)← accept(m1, w3)

womancost(3, 1)← accept(m2, w3)

womancost(3, 3)← accept(w3, w3)

manregret(Z)← #max{B : mancost(A,B)} = Z,#int(Z)

womanregret(Z)← #max{B : womancost(A,B)} = Z,#int(Z)

regret(X)← manregret(X), womanregret(Y), X > Y

regret(Y)← manregret(X), womanregret(Y), X <= Y

naccept′(M,W) ∨manpropose′(M,W)← man(M), woman(W)

naccept′(M,W) ∨ womanpropose′(M,W)← man(M), woman(W)

accept′(M,W) ∨ nmanpropose′(M,W) ∨ nwomanpropose′(M,W)← man(M), woman(W)

accept′(m1, w1) ∨ accept′(m1, w2) ∨ accept′(m1, w3) ∨ accept′(m1,m1)←
accept′(m2, w1) ∨ accept′(m2, w2) ∨ accept′(m2,m2)←

naccept′(m1,m1) ∨ naccept′(m1, w1)←
naccept′(m1,m1) ∨ naccept′(m1, w2)←

naccept′(m1,m1) ∨ naccept′(m1, w3)←
naccept′(m2,m2) ∨ naccept′(m2, w1)←
naccept′(m2,m2) ∨ naccept′(m2, w2)←

accept′(m1, w1) ∨ accept′(m2, w1) ∨ accept′(w1, w1)←
accept′(m1, w2) ∨ accept′(w2, w2)←

accept′(m1, w3) ∨ accept′(m2, w3) ∨ accept′(w3, w3)←
naccept′(w1, w1) ∨ naccept′(m1, w1)←
naccept′(w1, w1) ∨ naccept′(m2, w1)←
naccept′(w2, w2) ∨ naccept′(m1, w2)←
naccept′(w3, w3) ∨ naccept′(m1, w3)←
naccept′(w3, w3) ∨ naccept′(m2, w3)←

nmanpropose′(m1, w2) ∨ naccept′(m1, w1)←
nmanpropose′(m1, w2) ∨ naccept′(m1, w3)←
nmanpropose′(m1, w3) ∨ naccept′(m1, w1)←
nmanpropose′(m1, w3) ∨ naccept′(m1, w2)←

manpropose′(m1, w1)←
accept′(m1, w1) ∨ accept′(m1, w3) ∨manpropose′(m1, w2)←
accept′(m1, w1) ∨ accept′(m1, w2) ∨manpropose′(m1, w3)←

nmanpropose′(m2, w1) ∨ naccept′(m2, w2)←
nmanpropose′(m2, w1) ∨ naccept′(m2,m2)←

manpropose′(m2, w2)←
accept′(m2, w2) ∨ accept′(m2,m2) ∨manpropose′(m2, w1)←

nwomanpropose′(m1, w1) ∨ naccept′(m2, w1)←
nwomanpropose′(m2, w1) ∨ naccept′(m1, w1)←
accept′(m1, w1) ∨ womanpropose′(m2, w1)←
accept′(m2, w1) ∨ womanpropose′(m1, w1)←

womanpropose′(m1, w2)←
nwomanpropose′(m1, w3) ∨ naccept′(m2, w3)←

womanpropose′(m2, w3)←
accept′(m2, w3) ∨ womanpropose′(m1, w3)←

nmanpropose′(m2, w3)←
nwomanpropose′(m2, w2)←

sat← manpropose′(X,Y), nmanpropose′(X,Y),man(X), woman(Y)

sat← womanpropose′(X,Y), nwomanpropose′(X,Y),man(X), woman(Y)

sat← accept′(X,Y), naccept′(X,Y),man(X), woman(Y)

sat← accept′(X,X), naccept′(X,X),man(X)

sat← accept′(X,X), naccept′(X,X), woman(X)

mancost′(1, 1)← accept′(m1, w1)

mancost′(1, 2)← accept′(m1, w2)

mancost′(1, 2)← accept′(m1, w3)

mancost′(1, 3)← accept′(m1,m1)

mancost′(2, 2)← accept′(m2, w1)

mancost′(2, 1)← accept′(m2, w2)

mancost′(2, 2)← accept′(m2,m2)

womancost′(1, 1)← accept′(m1, w1)

womancost′(1, 1)← accept′(m2, w1)

womancost′(1, 2)← accept′(w1, w1)

womancost′(2, 1)← accept′(m1, w2)

womancost′(2, 2)← accept′(w2, w2)

womancost′(3, 2)← accept′(m1, w3)

womancost′(3, 1)← accept′(m2, w3)

womancost′(3, 3)← accept′(w3, w3)

manmax′(2, X)← mancost′(2, X)

manmax′(J,X)← manmax′(I,X),mancost′(J, Y), X >= Y,#succ(J, I)

manmax′(J,X)← manmax′(I,X),mancost′(J, Y), X >= Y,#succ(J, I)

manregret′(Z)← manmax′(1, Z)

womanmax′(2, X)← womancost′(2, X)

womanmax′(J,X)← womanmax′(I,X), womancost′(J, Y), X >= Y,#succ(J, I)

womanmax′(J,X)← womanmax′(I,X), womancost′(J, Y), X >= Y,#succ(J, I)

womanregret′(Z)← womanmax′(1, Z)

regret′(X)← manregret′(X), womanregret′(Y), X > Y

regret′(Y)← manregret′(X), womanregret′(Y), X <= Y

sat← regret(X), regret′(Y), X <= Y

← not sat

manargcost′1(1..2)←
manargcost′2(1..4)←

womanargcost′1(1..3)←
womanargcost′1(1..3)←

mancost′(X,Y)← sat,manargcost′1(X),manargcost′2(Y)

womancost′(X,Y)← sat, womanargcost′1(X), womanargcost′2(Y)

manpropose′(X,Y)← sat,man(X), woman(Y)

nmanpropose′(X,Y)← sat,man(X), woman(Y)

womanpropose′(X,Y)← sat,man(X), woman(Y)

nwomanpropose′(X,Y)← sat,man(X), woman(Y)

accept′(X,Y)← sat,man(X), woman(Y)

accept′(X,X)← sat,man(X)

accept′(X,X)← sat, woman(X)

naccept′(X,Y)← sat,man(X), woman(Y)

naccept′(X,X)← sat,man(X)

naccept′(X,X)← sat, woman(X)

Letting DLV compute the unique answer set of this disjunctive ASP program and filtering it to
the literals accept and regret, yields {accept(m2, w1), accept(m1, w3), accept(w2, w2), regret(2)},
corresponding exactly to the minimum regret stable set of the SMP instance and the corresponding
regret cost.

Proposition 4
Let the criterion crit be an element of {sexeq, weight, regret, singles}. For every answer set I of
the program Pcrit induced by an SMP instance with unacceptability and ties the set SI = {(m,w) |
accept(m, w) ∈ I} forms an optimal stable set of marriages w.r.t. criterion crit and the optimal
criterion value is given by the unique value vI for which crit(vI) ∈ I. Conversely for every optimal
stable set S = {(x1, y1), . . . , (xk, yk)} with optimal criterion value v there exists an answer set I of
Pcrit such that {(x, y) | accept(x, y) ∈ I} = {(xi, yi) | i ∈ {1, . . . , k}} and v is the unique value for
which crit(v) ∈ I.

Proof. Let (SM , SW) is an instance of the SMP with unacceptability and ties.

Answer set ⇒ Optimal stable set Let I be an arbitrary answer set of Pcrit and let SI be as in

the proposition. It is clear that the only rules in Pcrit that influence the literals of the form
manpropose(., .), womanpropose(., .) and accept(., .) are the rules in Pnorm. Hence any answer set I
of Pcrit should contain an answer set Inorm of Pnorm as a subset. Proposition 1 implies that Inorm
corresponds to a stable set SI = {(m,w) | accept(m,w) ∈ Inorm}. Moreover, the only literals of the
form manpropose(., .), womanpropose(., .) and accept(., .) in I are those in Inorm, so SI = {(m,w) |
accept(m,w) ∈ I}. If crit = sexeq, it is straightforward to see that the literals of the form accept(., .)
in Inorm uniquely determine which literals of the form mancost(., .), womancost(., .), manweight(.),
womanweight(.) and sexeq(.) should be in the answer set I. These literals do not occur in rules of
Pcrit besides those in Psexeq

ext . Notice that the rules which do contain these literals will imply that
there will be just one literal of the form sexeq(.) in I, namely sexeq(v) with v the sex-equalness cost
of SI . Analogous results can be derived for crit ∈ {weight, regret, singles}. It remains to be shown
that SI is an optimal stable set. Suppose by contradiction that SI is not optimal, so there exists a
stable set S∗ such that vI > v∗, with v∗ the criterion value of S∗ to be minimized. We will prove that
this implies that I cannot be an answer set of Pcrit, contradicting our initial assumption.
Proposition 2 and Lemma 3 imply that there exists an interpretation I∗disj of the ASP program Pdisj

induced by (SM , SW) that corresponds to the stable set S∗. Moreover this interpretation is consistent,
i.e. it will not contain atom and ¬atom for some atom atom. This implies that the interpretation
I ′disj defined as I∗disj in which ¬atom is replaced by natom for every atom atom will falsify the body

of the rules of the form (13) of P ′critext . An analogous reasoning as above yields that the literals of the

form accept′(., .) in I ′disj uniquely determine which literals of the form mancost′(., .), womancost′(., .),
mansum′(., .), womansum′(., .), manweight′(.), womanweight′(.) and sexeq′(.) should be in I ′disj .

With those extra literals added to I ′disj , I
′
disj satisfies all the rules of P ′critext . Moreover, crit(v∗) is the

unique literal of the form crit(.) in I ′disj . Notice that I ′disj does not contain the atom sat.
Define the interpretation J = Inorm ∪ I ′disj . From the previous argument it follows that J will satisfy

every rule of Pcrit
ext ∪ P ′critext since the predicates occurring in both programs do not overlap. Moreover

J contains crit(vI) and crit′(v∗) and these are the only literals of the form crit(.) or crit′(.). Since
vI > v∗ the rules of the form (15) will be satisfied by J since their body is always false. Call J ′ the
set J ∪ {a | (a←) ∈ Psat}. Since J ′ does not contain sat, the rules of Psat will all be satisfied by J ′,
with exception of the rule ← not sat.
The rule of the form (16) implies that I as answer set of Pcrit should contain sat. Now the set
of rules (17) – (18) imply that I should also contain the literals mancost′(., .), womancost′(., .) and
manpropose′(., .), womanpropose′(., .), accept′(., .) with the corresponding literals prefixed by n for
every possible argument stated by the facts in Psat. The successively computing rules (14) resp. (23)
and (25) in P ′critext , by which we replaced rules (10) – (11) resp. (20) – (21) and (24), garantuee that
for every possible set of marriages and its corresponding criterium value c I will contain crit(c) and
all associated intermediate results. E.g. for crit = sexeq, the rules will garantuee that I also contains
mansum′(., .), manweight(.), womansum(., .) and womanweight(.) for every argument that could
occur in a model of P ′critext . 8 This implies that I ′disj ⊆ I. We already reasoned in the beginning of the
proof that Inorm ⊆ I holds so it follows that J ⊆ I. Since the literals of J ′ \ J are stated as facts of
Pcrit
ext , they should be in I, hence J ′ ⊆ I. Moreover J ′ ⊂ I since sat ∈ I \ J ′.

We use the notation red(P, I) to denote the reduct of an ASP program P w.r.t. an interpretation I.
There is no rule in P ′critext with negation-as-failure in the body, hence red(P ′critext , I) = red(P ′critext , J

′) =
P ′critext . We already reasoned that J ′ satifies all the rules of the latter. We also reasoned that I does not
contain any other literals of the form accept(., .) than those who are also in Inorm, and by construction
the same holds for J ′. Hence red(Pcrit

ext , I) = red(Pcrit
ext , J

′) and by construction J ′ satisfies all the
rules of this reduct. It is clear that red(Psat, I) is Psat without the rule ← not sat, since sat ∈ I.
Again we already argued that J ′ satisfies red(Psat, I). Hence J ′ satisfies all the rules of red(Pcrit, I),
implying that I, which strictly contains J ′, cannot be an answer set of Pcrit since it is not a minimal
model of the negation-free ASP program red(Pcrit, I) [9].

Optimal stable set ⇒ Answer set Let (SM , SW) be an instance of the SMP with unacceptability

and ties and let S = {(x1, y1), . . . , (xk, yk)} be an optimal stable set with optimal criterion value v.
To see that the second part of the proposition holds it suffices to verify that the following interpre-
tation I is an answer set of Pcrit, with the notation Pxi

(y) as the index a for which y ∈ σl
M (a) if

xi = ml and symmetrically Pyi(x) as the index a for which x ∈ σl′

W (a) if yi = wl′ . If xi = yi we set
Pxi(yi) = Pyi(xi) = |σi

M | if xi is a man and |σi
W | otherwise. So let I be given by:

I = I1 ∪ I2
8Notice that this would not be the case if we use the original rules with #sum, #max and #count in P ′critext , since

these rules would lead to only one value cM for which e.g. manweight(cM) should be in I, and similarly only one value
cW for which womanweight(cW) should be in I. Consequently there would be only one value c such that crit(c) should
be in I. This value would not necessarily correspond to v∗ and so we would not be able to conclude that I′disj ⊆ I.

Moreover DLV does not allow the use of these rules because of the cyclic dependency of literals they would create,
involving the variables in the aggregate functions.

with

I1 ={accept(xi, yi) | i ∈ {1, . . . , k}}{crit(v)} ∪ {sat}
∪{womanpropose(xi, yi) |xi 6= yi}{manpropose(xi, yi)|xi 6= yi}
∪{manpropose(xi, y) | i ∈ {1, . . . , k}, xi = ml,∃a < Pxi

(yi):y ∈ σl
M (a)}

∪{womanpropose(x, yi)|i ∈ {1, . . . , k}, yi = wl′ ,∃a < Pyi
(xi):x ∈ σl′

W (a)}
∪{mancost(l, Pxi

(yi)) | crit 6= singles, i ∈ {1, . . . , k}, xi = ml}
∪{womancost(Pyi

(xi), l
′) | crit 6= singles, i ∈ {1, . . . , k}, yi = wl′}

∪{manweight(cM (S)) | crit ∈ {sexeq, weight}}
∪{womanweight(cW (S)) | crit ∈ {sexeq, weight}}
∪{manregret(cregret,M (S)) | crit = regret}
∪{womanregret(cregret,W (S)) | crit = regret}

and

I2 ={manargcost′1(z) | z ∈ {1, . . . , n}}
∪{manargcost′2(z) | z ∈ {1, . . . , p+ 1}}
∪{womanargcost′1(z) | z ∈ {1, . . . , p}}
∪{womanargcost′2(z) | z ∈ {1, . . . , n+ 1}}
∪{man(x) |x ∈M} ∪ {woman(x) |x ∈W} (26)

∪{mancost′(i, j) | crit 6= singles, i ∈ {1, . . . , n}, j ∈ {1, . . . , p+ 1}}
∪{womancost′(j, i) | crit 6= singles, i ∈ {1, . . . , n+ 1}, j ∈ {1, . . . , p}} (27)

∪{manpropose′(x, y) |x ∈M,y ∈W} ∪ {womanpropose′(x, y) |x ∈M,y ∈W}
∪{accept′(x, y) |x ∈M,y ∈W} ∪ {accept′(x, x) |x ∈M ∪W}
∪{nmanpropose′(x, y) |x ∈M,y ∈W}
∪{nwomanpropose′(x, y) |x ∈M,y ∈W}
∪{naccept′(x, y) |x ∈M,y ∈W} ∪ {naccept′(x, x) |x ∈M ∪W} (28)

∪{crit′(val) | val ∈ arg(crit)}
∪{single′(i, j) | crit = singles, i ∈ {1, . . . , n+ p}, j ∈ {0, 1}}
∪{singlesum′(i, j) | crit = singles, i ∈ {1, . . . , n+ p}, j ∈ {1, . . . , (n+ p− i+ 1)}}
∪{mansum′(i, j) | crit ∈ {sexeq, weight}, i ∈ {1, . . . , n}, j ∈ {n− i+ 1, . . . , (n− i+ 1)(p+ 1)}}
∪{womansum′(j, i) | crit ∈ {sexeq, weight}, j ∈ {1, . . . , p}, i ∈ {p− j + 1, . . . , (p− i+ 1)(n+ 1)}}
∪{manweight′(z) | crit ∈ {sexeq, weight}, z ∈ {n, . . . , n(p+ 1)}}
∪{womanweight′(z) | crit ∈ {sexeq, weight}, z ∈ {p, . . . , p(n+ 1)}}
∪{manmax′(i, j) | crit = regret, i ∈ {1, . . . , n}, j ∈ {1, . . . , p+ 1}}
∪{womanmax′(j, i) | crit = regret, j ∈ {1, . . . , p}, i ∈ {1, . . . , n+ 1}
∪{manregret′(z) | crit = regret, z ∈ {1, . . . , p+ 1}}
∪{womanregret′(z) | crit = regret, z ∈ {1, . . . , n+ 1}} (29)

The notation arg(c) stands for the possible values the criterion can take within this problem instance:

• crit = sexeq ⇒ arg(crit) = {0, . . . ,max(np+ n− p, np+ p− n)},

• crit = weight⇒ arg(crit) = {n+ p, . . . , 2np+ p+ n},

• crit = regret⇒ arg(crit) = {1, . . . ,max(p, n) + 1)},

• crit = singles⇒ arg(crit) = {0, . . . , n+ p}.

To verify wether this interpretation is an answer set of Pcrit, we should compute the reduct w.r.t. I
and check wether I is a minimal model of the reduct [9]. It can readily be checked that I satisfies all
the rules of red(Pcrit, I). It remains te be shown that there is no strict subset of I with satisfies all
the rules. First of all all the facts of Pcrit must be in the minimal model of the reduct, explaining
why the sets of literals (26) should be in I. The only rules with negation-as-failure are part of Pcrit

ext .
As in the previous part of the proof, it is straightforward to see that I1 is the unique minimal model
of the reduct of Pcrit

ext w.r.t. I, considering that the literals in I2 don’t occur in Pcrit
ext . So any minimal

model of red(Pcrit, I) must contain I1.
The key rule which makes sure that I is a minimal model of the reduct is (15). The rules (13) imply
that for each model of red(Pcrit, I) that does not contain sat, the literals of P ′critext in that model
will correspond to a stable set of the SMP instance. In that case rule (15) will have a true body,
since S is optimal, implying that sat should have been in the model. And the presence of sat in any
minimal model implies the presence of the set of literals (29) in any minimal model of the reduct.
This can be seen with the following reasoning. Due to the presence of the facts (26) and sat in
any minimal model of the reduct, rules (17) imply the presence of the literals (27) in any minimal
model. For the same reason rules (18) imply that the literals (28) should be in any minimal model
of red(Pcrit, I). For crit = sexeq the presence of the literals of the form (27) in any minimal model
of the reduct together with rules (14) imply that mansum′(i, j) should be in any minimal model for
every i ∈ {1, . . . , n} and j ∈ {n− i+ 1, . . . , (n− i+ 1)(p+ 1)}: for i = n the first rule of (14) implies
that mansum′(n, x) is in any minimal model for every x such that manargcost′2(x) is in it, i.e. any
x ∈ {1, . . . , p+1}. Now the second rule of (14) implies that mansum′(n−1, x) is in any minimal model
for every x+y such that manargcost′2(x) and mansum′(n, y) are in it, i.e. any x+y ∈ {2, . . . , 2(p+1)}.
If we continue like this, it is straightforward that every literal of the form mansum′(., .) of I2 should
be in any minimal model. The third rule of (14) now implies that manweight′(x) should be in
any minimal model for every x such that mansum′(1, x) is in it, i.e. x ∈ {n, . . . , n(p + 1)}. The
same reasoning can be repeated for the literals womansum′ and womanweight′. At this point rules
(12) imply that sexeq′(|x − y|) should be in any minimal model which contains manweight′(x) and
womanweight′(y). Notice that only one of the two rules in (12) will apply for every x and y since
the numerical variables in DLV are positive. Considering the arguments for which manweight′ and
womanweight′ should be in any minimal model, it follows that sexeq′(x) should be in any minimal
model for every x ∈ {0, . . . ,max(p(n+ 1)−n, n(p+ 1)− p)}, which is exactly arg(crit). For the other
criteria, an analogous reasoning shows that the presence of all literals of I2 is required in any minimal
model of the reduct.
Considering the fact that we have proved that all literals of I should be in any minimal model of the
reduct and I fulfils all the rules of the reduct, we know that I is a minimal model of the reduct and
thus an answer set of Pcrit.

If we delete from Psexeq the rules (11) – (12) and replace rule (15) by the rule sat← manweight(X),
manweight′(Y), X ≤ Y , then we obtain the M-optimal stable sets. Analogously we can obtain the
W-optimal stable sets.

If a criterion is to be maximized, the symbol ≤ in rule (15) is simply replaced by ≥. E.g. for
crit = singles we will get minimum cardinality stable sets.

5 Complexity and Future Work

The NP-complete decision problem ‘does there exist a stable set with cardinality ≥ k (resp. ≤ k) for
an SMP instance with unacceptability and ties with k a positive integer?’ [17, 18] has practical impor-
tance, e.g. in the National Resident Matching Program [18]. If we add a rule sat ← singles(X), X ≤
(n+p−2k) to the extended induced program Psingles

ext defined in Subsect. 4.3, then this problem can be

formulated as ‘does there exist an answer set of the normal ASP program Psingles
ext which contains the

literal sat?’ (i.e. brave reasoning), another NP-complete problem [1]. So our model forms a suitable
framework for these kind of decision problems concerning optimality of stable sets in the SMP.

Notice that the complexity of this kind of decision problem and the one mentioned in the last
paragraph of Subsect. 3 are a good indication how hard it is to find an (optimal) stable set, as
opposed to the problems ‘does there exist an (optimal) stable set?’, which tell us how hard it is to
know whether there exists a solution but not necessarily how hard it is to find one.

Combining these problems leads to a new decision problem: ‘is the pair (m,w) optimally stable
for an instance of the SMP with unacceptability and ties?’. We define an optimally stable pair as a
pair (m,w) for which there exists an optimal stable set in which m and w are matched. As far as
we know this problem has not been studied yet, although it could be useful in practice, for instance
if one wants to find a maximum cardinality matching but also wants to prioritize some couple or a
person. Optimality is still desirable, because it ensures the others from not being put too much at a
disadvantage. For instance in the kidney exchange problem, in which kidney patients with a willing
but incompatible donor try to interchange each other’s donors to get a transplant, this is a realistic
situation: if two patients with intercompatible donors urgently need a transplant, they should get
priority, but of course we still want to match as many patients to donors as possible. Considering the
complexity of the separate decision problems, the combined problem might have a higher complexity,
perhaps corresponding to the ΣP

2 -complexity of our grounded disjunctive normal ASP program with
aggregate functions [1, 3]. It should be noticed however that the addition of constraints not necessarily
increases complexity and a precise classification of complexity is desirable.

6 Conclusion

We formalized and solved different variants of the SMP using ASP programs, which can easily be
adapted to yet other variants. Moreover we applied saturation to compute optimal stable sets, with
the advantage that these programs can be handled with the efficient off-the-shelf ASP solver DLV.
To the best of our knowledge, our encoding offers the first exact implementation of finding sex-equal,
egalitarian, minimum regret, or maximum cardinality stable sets for an instance of the SMP with
unacceptability and ties. Hence, our general framework allows us to tackle a class of problems and
requires only small adaptions to easily shift between them.

References

[1] C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge
University Press, New York, NY, USA, 2003.

[2] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communications
of the ACM, 54(12):92–103, 2011.

[3] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in disjunctive
logic programming: Semantics, complexity, and implementation in DLV. In G. Gottlob and
T. Walsh, editors, IJCAI, pages 847–852. M. Kaufmann, 2003.

[4] P.M. Dung. An argumentation-theoretic foundation for logic programming. The Journal of Logic
Programming, 22(2):151–177, 1995.

[5] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions on Database
Systems, 22(3):364–418, 1997.

[6] E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic Programming,
3:499–518, 2003.

[7] D. Gale and L.S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

[8] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discr. Appl. Math.,
11:223–232, 1985.

[9] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP/SLP,
pages 1070–1080, 1988.

[10] D. Gusfield. Three fast algorithms for four problems in stable marriage. SIAM J. Comput.,
16(1):111–128, 1987.

[11] R.W. Irving. Stable marriage and indifference. Discr. Appl. Math., 48(3):261–272, 1994.

[12] R.W. Irving. The cycle roommates problem: a hard case of kidney exchange. Inf. Process. Lett.,
103(1):1–4, 2007.

[13] R.W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal” stable marriage.
J. ACM, 34(3):532–543, 1987.

[14] K. Iwama and S. Miyazaki. A survey of the stable marriage problem and its variants. In Proc. of
the Intern. Conf. on Informatics Educ. and Research for Knowledge-Circulating Society, ICKS’08,
pages 131–136. IEEE Computer Society, 2008.

[15] T. Janhunen. Representing normal programs with clauses. In In Proc. of the 16th European
Conference on Artificial Intelligence, pages 358–362. IOS Press, 2004.

[16] A. Kato. Complexity of the sex-equal stable marriage problem. Japan Journal of Industrial ans
Applied Mathematics (JJIAM), 10:1–19, 1993.

[17] D. Manlove. Stable marriage with ties and unacceptable partners. Technical report, University
of Glasgow, Department of Computing Science, 1999.

[18] D. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable marriage.
Theoretical Computer Science, 276(1-2):261–279, 2002.

[19] V.W. Marek, A. Nerode, and J.B. Remmel. A theory of nonmonotonic rule systems I. Ann.
Math. Artif. Intell., 1:241–273, 1990.

[20] E. McDermid and R.W. Irving. Sex-equal stable matchings: Complexity and exact algorithms.
Algorithmica, pages 1–26, 2012.

[21] A.E. Roth, T. Sömnez, and M.U. Ünver. Pairwise kidney exchange. J. Econ. Theory, 125(2):151
– 188, 2005.

[22] A.E. Roth and M.A.O. Sotomayor. Two-Sided Matching: A Study in Game-Theoretic Modeling
and Analysis. Cambridge University Press, 1990.

[23] H. Xu and B. Li. Egalitarian stable matching for VM migration in cloud computing. In Computer
Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on, pages 631–636,
2011.

