7 research outputs found

    NASA Langley Research Center National Aero-Space Plane Mission simulation profile sets

    Get PDF
    To provide information on the potential for long life service of oxidation resistant carbon-carbon (ORCC) materials in the National Aero-Space Plane (NASP) airframe environment, NASP ascent, entry, and cruise trajectories were analytically flown. Temperature and pressure profiles were generated for 20 vehicle locations. Orbital (ascent and entry) and cruise profile sets from four locations are presented along with the humidity exposure and testing sequences that are being used to evaluate ORCC materials. The four profiles show peak temperatures during the ascent leg of an orbital mission of 2800, 2500, 2000, and 1700 F. These profiles bracket conditions where carbon-carbon might be used on the NASP vehicle

    Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    No full text
    © 2016 The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA\u27s Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon
    corecore