70 research outputs found

    Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide

    Get PDF
    One of the most recently proposed candidates as a potential trigger for cardiovascular diseases is trimethylamine-N-oxide (TMAO). Possible direct effects of TMAO on myocardial tissue, independent of vascular damage, have been only partially explored so far. In the present study, we assessed the detrimental direct effects of TMAO on cardiomyocyte contractility and intracellular calcium dynamics, and the ability of urolithin B-glucuronide (Uro B-gluc) in counteracting TMAO-induced cell damage. Cell mechanics and calcium transients were measured, and ultrastructural analysis was performed in ventricular cardiomyocytes isolated from the heart of normal adult rats. Cells were either untreated, exposed to TMAO, or to TMAO and Uro B-gluc. TMAO exposure worsened cardiomyocyte mechanics and intracellular calcium handling, as documented by the decrease in the fraction of shortening (FS) and the maximal rate of shortening and re-lengthening, associated with reduced efficiency in the intracellular calcium removal. Ultrastructurally, TMAO-treated cardiomyocytes also exhibited glycogen accumulation, a higher number of mitochondria and lipofuscin-like pigment deposition, suggesting an altered cellular energetic metabolism and a higher rate of protein oxidative damage, respectively. Uro B-gluc led to a complete recovery of cellular contractility and calcium dynamics, and morphologically to a reduced glycogen accumulation. We demonstrated for the first time a direct negative role of TMAO on cardiomyocyte functional properties and the ability of Uro B-gluc in counteracting these detrimental effects

    In vitro bioaccessibility of phenolic acids from a commercial aleurone-enriched bread compared to a whole grain bread

    Get PDF
    Wheat aleurone, due to its potentially higher bioaccessibility and bioavailability of micronutrients and phenolic acids, could represent a useful ingredient in the production of commonly consumed cereal-based food. The aim of the present study was to investigate the in vitro bioaccessibility of phenolic acids both from an aleurone-enriched bread and from a whole grain bread. The two bread samples were firstly characterized for the phenolic acid content. An in vitro digestion was then performed in order to evaluate the release of phenolic acids. The results obtained suggest that the bioaccessibility of the phenolic acids in the aleurone-enriched bread is higher than in the whole grain bread. These in vitro results suggest the potential use of aleurone in the production of foods, and this may represent an attractive possibility to vehicle nutritionally interesting components to consumers

    New insights into the bioavailability of red raspberry anthocyanins and ellagitannins

    Get PDF
    Red raspberries, containing ellagitannins and cyanidin-based anthocyanins, were fed to volunteers and metabolites appearing in plasma and urine were analysed by UHPLC-MS. Anthocyanins were not absorbed to any extent with sub nmol/L concentrations of cyanidin-3-O-glucoside and a cyanidin-O-glucuronide appearing transiently in plasma. Anthocyanins excreted in urine corresponded to 0.007% of intake. More substantial amounts of phase II metabolites of ferulic acid and isoferulic acid, along with 4′-hydroxyhippuric acid, potentially originating from pH-mediated degradation of cyanidin in the proximal gastrointestinal tract, appeared in urine and also plasma where peak concentrations were attained 1–1.5 h after raspberry intake. Excretion of 18 anthocyanin-derived metabolites corresponded to 15.0% of intake, a figure substantially higher than obtained in other anthocyanin feeding studies. Ellagitannins pass from the small to the large intestine where the colonic microbiota mediate their conversion to urolithins A and B which appeared in plasma and were excreted almost exclusively as sulfate and glucuronide metabolites. The urolithin metabolites persisted in the circulatory system and were excreted in urine for much longer periods of time than the anthocyanin metabolites although their overall urinary recovery was lower at 7.0% of intake. It is events originating in the proximal and distal gastrointestinal tract, and subsequent phase II metabolism, that play an important role in the bioavailability of both anthocyanins and ellagitannins and it is their metabolites which appear in the circulatory system, that are key to elucidating the mode of action(s) underlying the protective effects of these compounds on human health

    Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans

    Get PDF
    Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basi

    In vitro faecal fermentation of monomeric and oligomeric flavan‐3‐ols: catabolic pathways and stoichiometry

    Get PDF
    Scope: The study evaluated the influence of flavan-3-ol structure on the production of phenolic catabolites, principally phenyl-γ-valerolactones (PVLs) and phenylvaleric acids (PVAs). Methods and results: A set of 12 monomeric flavan-3-ols and proanthocyanidins (degree of polymerisation (DP) of 2–5), were fermented in vitro for 24 h using human faecal microbiota, and catabolism was analysed by UHPLC-ESI-MS/MS. Up to 32 catabolites strictly related to microbial catabolism of parent compounds were detected. (+)-Catechin and (−)-epicatechin had the highest molar mass recoveries, expressed as a percentage with respect to the incubated concentration (75 μmol L–1) of the parent compound, for total PVLs and PVAs, both at 5 h (about 20%) and 24 h (about 40%) of faecal incubation. Only A-type dimer and B-type procyanidins underwent the ring fission step, and no differences were found in total PVL and PVA production (≃ 1.5% and 6.0% at 5 h and 24 h faecal incubation, respectively) despite the different DPs. Conclusion: The flavan-3-ol structure strongly affected the colonic catabolism of the native compounds, influencing the profile of PVLs and PVAs produced in vitro. This study opens new perspectives to further elucidate the colonic fate of oligomeric flavan-3-ols and their availability in producing bioactive catabolites

    Catabolism of raw and cooked green pepper (Capsicum annuum) (poly)phenolic compounds after simulated gastrointestinal digestion and fecal fermentation.

    Get PDF
    A total of 21 (poly)phenolic compounds (free and bound) were quantified in raw, olive oil fried, sunflower oil fried and griddled green pepper before and after a simulated gastrointestinal digestion. Flavonoids, particularly quercetin rhamnoside, were the main compounds. The bioaccessibility of (poly)phenolic compounds after gastrointestinal digestion was higher in cooked (>82%) than in raw (48%) samples, showing a positive effect of heat treatment on the release of (poly)phenols from the vegetal matrix. Additionally, a faecal fermentation was carried out for 24h. A time-dependent microbial metabolic activity was observed, which resulted firstly (<5h) in the hydrolysis of flavonoid glycosides and then in the formation of 3 catabolites, namely 3,4-dihydroxybenzoic acid, dihydrocaffeic acid and 3-(3′-hydroxyphenyl)propionic acid, this being by far the most abundant. Catabolic pathways for colonic microbial degradation of flavonoids and hydroxycinnamic acids have been proposed. Griddled pepper showed the highest amount of (poly)phenols both after gastrointestinal digestion and colonic fermentation

    Unravelling phenolic metabotypes in the frame of the COMBAT study, a randomized, controlled trial with cranberry supplementation

    Get PDF
    Cranberry (poly)phenols may have potential health benefits. Circulating (poly)phenol metabolites can act as mediators of these effects, but they are subjected to an extensive inter-individual variability. This study aimed to quantify both plasma and urine (poly)phenol metabolites following a 12-week intake of a cranberry powder in healthy older adults, and to investigate inter-individual differences by considering the existence of urinary metabotypes related to dietary (poly)phenols. Up to 13 and 67 metabolites were quantified in plasma and urine respectively. Cranberry consumption led to changes in plasma metabolites, mainly hydroxycinnamates and hippuric acid. Individual variability in urinary metabolites was assessed using different data sets and a combination of statistical models. Three phenolic metabotypes were identified, colonic metabolism being the main driver for subject clustering. Metabotypes were characterized by quali-quantitative differences in the excretion of some metabolites such as phenyl-γ-valerolactones, hydroxycinnamic acids, and phenylpropanoic acids. Metabotypes were further confirmed when applying a model only focused on flavan-3-ol colonic metabolites. 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone derivatives were the most relevant metabolites for metabotyping. Metabotype allocation was well preserved after 12-week intervention. This metabotyping approach for cranberry metabolites represents an innovative step to handle the complexity of (poly)phenol metabolism in free-living conditions, deciphering the existence of metabotypes derived from the simultaneous consumption of different classes of (poly)phenols. These results will help contribute to studying the health effects of cranberries and other (poly)phenol-rich foods, mainly considering gut microbiota-driven individual differences

    A systematic review and comprehensive evaluation of human intervention studies to unravel the bioavailability of hydroxycinnamic acids

    Get PDF
    Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacokinetics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports.Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105 HCA metabolites were collected, mainly acyl-quinic and C-6-C-3 cinnamic acids. C-6-C-3 cinnamic acids, such as caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [C-max] = 423 nM), with time to reach C-max (T-max) values ranging from 2.7 to 4.2 h. These compounds were excreted in urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%).Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent.Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most important dietary sources is urgently required. Eight key metabolites were identified and reached interesting plasma C-max concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at physiological concentrations

    Impact of Foods and Dietary Supplements Containing Hydroxycinnamic Acids on Cardiometabolic Biomarkers: A Systematic Review to Explore Inter-Individual Variability

    Get PDF
    Plant-based diets rich in bioactive compounds such as polyphenols have been shown to positively modulate the risk of cardiometabolic (CM) diseases. The inter-individual variability in the response to these bioactives may affect the findings. This systematic review aimed to summarize findings from existing randomized clinical trials (RCTs) evaluating the effect of hydroxycinnamic acids (HCAs) on markers of CM health in humans. Literature searches were performed in PubMed and the Web of Science. RCTs on acute and chronic supplementation of HCA-rich foods/extracts on CM biomarkers were included. Forty-four RCTs (21 acute and 23 chronic) met inclusion criteria. Comparisons were made between RCTs, including assessments based on population health status. Of the 44 RCTs, only seven performed analyses on a factor exploring inter-individual response to HCA consumption. Results demonstrated that health status is a potentially important effect modifier as RCTs with higher baseline cholesterol, blood pressure and glycaemia demonstrated greater overall effectiveness, which was also found in studies where specific subgroup analyses were performed. Thus, the effect of HCAs on CM risk factors may be greater in individuals at higher CM risk, although future studies in these populations are needed, including those on other potential determinants of inter-individual variability. PROSPERO, registration number CRD42016050790

    Tolerance, bioavailability, and potential cognitive health implications of a distinct aqueous spearmint extract

    Get PDF
    Background: Cognitive function can decline during the aging process and significantly reduce quality of life. Although a number of interventions have been investigated for cognitive dysfunction, including antioxidants, this prominent health concern emphasizes a need to explore methods to support cognitive health later in the life span. An aqueous extract from a proprietary spearmint line has been developed which contains a number of antioxidant compounds, including rosmarinic acid, at levels that are higher than found in commercially-bred spearmint. Therefore, this pilot trial assessed the tolerance, bioavailability, and potential cognitive health implications of a proprietary spearmint extract in men and women with self-reported memory impairment. Methods: Subjects consumed 900 mg/day spearmint extract for 30 days. The sample population (N = 11) was 73% female and 27% male with a mean age of 58.7 ± 1.6 y. Tolerability parameters were assessed at baseline and end of treatment visits. Computerized cognitive function tests were completed and blood was drawn at pre- and post-dose (0.5 to 4 h) timepoints during baseline and end of treatment visits. Subjective cognition was also assessed at end of treatment. Results: No serious adverse events or clinically relevant findings were observed in any tolerability parameters. Plasma vanillic, caffeic, and ferulic acid sulfates, rosmarinic acid, and methyl rosmarinic acid glucuronide were detected in plasma following acute administration of the spearmint extract. Computerized cognitive function scores improved in reasoning (P = 0.023) and attention/concentration (P = 0.002) after 30 days of supplementation. After acute administration, subjects had improved attention/concentration in two tests at 2 (P = 0.042 and P = 0.025) and 4 h (P = 0.001 and P = 0.002). Conclusions: The results from this pilot trial suggest that the spearmint extract, which contains higher rosmarinic acid content relative to extracts from typical commercial lines, was welltolerated at 900 mg/day. In addition, the extract was bioavailable and further investigation is warranted regarding its potential for supporting cognitive healt
    corecore