915 research outputs found
Roles of proton-neutron interactions in alpha-like four-nucleon correlations
An extended pairing plus QQ force model, which has been shown to successfully
explain the nuclear binding energy and related quantities such as the symmetry
energy, is applied to study the alpha-like four-nucleon correlations in
1f_{7/2} shell nuclei.
The double difference of binding energies, which displays a characteristic
behavior at , is interpreted in terms of the alpha-like
correlations. Important roles of proton-neutron interactions forming the
alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.
Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes
We present an abstract framework for analyzing the weak error of fully
discrete approximation schemes for linear evolution equations driven by
additive Gaussian noise. First, an abstract representation formula is derived
for sufficiently smooth test functions. The formula is then applied to the wave
equation, where the spatial approximation is done via the standard continuous
finite element method and the time discretization via an I-stable rational
approximation to the exponential function. It is found that the rate of weak
convergence is twice that of strong convergence. Furthermore, in contrast to
the parabolic case, higher order schemes in time, such as the Crank-Nicolson
scheme, are worthwhile to use if the solution is not very regular. Finally we
apply the theory to parabolic equations and detail a weak error estimate for
the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic
heat equation
An Alternative Method to Deduce Bubble Dynamics in Single Bubble Sonoluminescence Experiments
In this paper we present an experimental approach that allows to deduce the
important dynamical parameters of single sonoluminescing bubbles (pressure
amplitude, ambient radius, radius-time curve) The technique is based on a few
previously confirmed theoretical assumptions and requires the knowledge of
quantities such as the amplitude of the electric excitation and the phase of
the flashes in the acoustic period. These quantities are easily measurable by a
digital oscilloscope, avoiding the cost of expensive lasers, or ultrafast
cameras of previous methods. We show the technique on a particular example and
compare the results with conventional Mie scattering. We find that within the
experimental uncertainties these two techniques provide similar results.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
Alpha decay and proton-neutron correlations
We study the influence of proton-neutron (p-n) correlations on alpha-decay
width. It is shown from the analysis of alpha Q values that the p-n
correlations increase the penetration of the alpha particle through the Coulomb
barrier in the treatment following Gamow's formalism, and enlarges the total
alpha-decay width significantly.
In particular, the isoscalar p-n interactions play an essential role in
enlarging the alpha-decay width.
The so-called "alpha-condensate" in Z > 84 isotopes are related to the strong
p-n correlations.Comment: 5 pages, 6 figures, accepted for publication in Phys. Rev. C (R.C.
Hard diffractive quarkonium hadroproduction at high energies
We present a study of heavy quarkonium production in hard diffractive process
by the Pomeron exchange for Tevatron and LHC energies. The numerical results
are computed using recent experimental determination of the diffractive parton
density functions in Pomeron and are corrected by unitarity corrections through
gap survival probability factor. We give predictions for single as well as
central diffractive ratios. These processes are sensitive to the gluon content
of the Pomeron at small Bjorken-x and may be particularly useful in studying
the small-x physics. They may also be a good place to test the different
available mechanisms for quarkonium production at hadron colliders.Comment: 7 pages, 3 figures, 1 table. Final version to be published in
European Physical Journal
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP
Promptly decaying lightest neutralinos and long-lived staus are searched for
in the context of light gravitino scenarios. It is assumed that the stau is the
next to lightest supersymmetric particle (NLSP) and that the lightest
neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector
at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of
the production of these particles is found. Hence, lower mass limits for both
kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is
found to be greater than 71.5 GeV/c^2. In the search for long-lived stau,
masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10
to 150 \eVcc . Combining this search with the searches for stable heavy leptons
and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc
may be set for the stau mas
Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a
centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV
during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data
were used to measure the average charged particle multiplicity in e+e- -> b
bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the
multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183
GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85
(stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01
(syst). This result is consistent with QCD predictions, while it is
inconsistent with calculations assuming that the multiplicity accompanying the
decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
- …