1,598 research outputs found

    Velocity selection problem for combined motion of melting and solidification fronts

    Get PDF
    We discuss a free boundary problem for two moving solid-liquid interfaces that strongly interact via the diffusion field in the liquid layer between them. This problem arises in the context of liquid film migration (LFM) during the partial melting of solid alloys. In the LFM mechanism the system chooses a more efficient kinetic path which is controlled by diffusion in the liquid film, whereas the process with only one melting front would be controlled by the very slow diffusion in the mother solid phase. The relatively weak coherency strain energy is the effective driving force for LFM. As in the classical dendritic growth problems, also in this case an exact family of steady-state solutions with two parabolic fronts and an arbitrary velocity exists if capillary effects are neglected. We develop a velocity selection theory for this problem, including anisotropic surface tension effects. The strong diffusion interaction and coherency strain effects in the solid near the melting front lead to substantial changes compared to classical dendritic growth.Comment: submitted to PR

    Onsager approach to 1D solidification problem and its relation to phase field description

    Get PDF
    We give a general phenomenological description of the steady state 1D front propagation problem in two cases: the solidification of a pure material and the isothermal solidification of two component dilute alloys. The solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The isothermal solidification of two component alloys is controlled by the diffusion in the bulk and the interface kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior of velocity versus concentration which has previously been discussed by different approaches. We also discuss the relation of this Onsager approach to the thin interface limit of the phase field description.Comment: 5 pages, 1 figure, submitted to Physical Review

    Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters

    Full text link
    Our numerical simulations with the Cahn-Hilliard equation show that coarsening of fractal clusters (FCs) is not a scale-invariant process. On the other hand, a typical coarsening length scale and interfacial area of the FC exhibit power laws in time, while the mass fractal dimension remains invariant. The initial value of the lower cutoff is a relevant length scale. A sharp-interface model is formulated that can follow the whole dynamics of a diffusion controlled growth, coarsening, fragmentation and approach to equilibrium in a system with conserved order parameter.Comment: 4 pages, 4 figures, RevTex, submitted to PR

    Aggregation Patterns in Stressed Bacteria

    Full text link
    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.Comment: 4 pages, REVTeX with 4 postscript figures (uuencoded) Figures 1a and 1b are available from the authors; paper submitted to PRL

    Semiclassical theory of electron drag in strong magnetic fields

    Full text link
    We present a semiclassical theory for electron drag between two parallel two-dimensional electron systems in a strong magnetic field, which provides a transparent picture of the most salient qualitative features of anomalous drag phenomena observed in recent experiments, especially the striking sign reversal of drag at mismatched densities. The sign of the drag is determined by the curvature of the effective dispersion relation obeyed by the drift motion of the electrons in a smooth disorder potential. Localization plays a role in explaining activated low temperature behavior, but is not crucial for anomalous drag per se.Comment: 10 page

    Quasiperiodic Tip Splitting in Directional Solidification

    Full text link
    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys with poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching morphology was selected by solidifying grains which are oriented close to the {111} plane. Despite the random appearance of the growth, a quasiperiodic tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f V^{1.5}. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter

    Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion

    Get PDF
    Identifying with a body is central to being a conscious self. The now classic “rubber hand illusion” demonstrates that the experience of body ownership can be modulated by manipulating the timing of exteroceptive(visual and tactile)body-related feedback. Moreover,the strength of this modulation is related to individual differences in sensitivity to internal bodily signals(interoception). However the interaction of exteroceptive and interoceptive signals in determining the experience of body-ownership within an individual remains poorly understood.Here, we demonstrate that this depends on the online integration of exteroceptive and interoceptive signals by implementing an innovative “cardiac rubber hand illusion” that combined computer-generated augmented-reality with feedback of interoceptive (cardiac) information. We show that both subjective and objective measures of virtual-hand ownership are enhanced by cardio-visual feedback in-time with the actual heartbeat,as compared to asynchronous feedback. We further show that these measures correlate with individual differences in interoceptive sensitivity,and are also modulated by the integration of proprioceptive signals instantiated using real-time visual remapping of finger movements to the virtual hand.Our results demonstrate that interoceptive signals directly influence the experience of body ownership via multisensory integration,and they lend support to models of conscious selfhood based on interoceptive predictive coding

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Efficient Computation of Dendritic Microstructures using Adaptive Mesh Refinement

    Full text link
    We study dendritic microstructure evolution using an adaptive grid, finite element method applied to a phase-field model. The computational complexity of our algorithm, per unit time, scales linearly with system size, rather than the quadratic variation given by standard uniform mesh schemes. Time-dependent calculations in two dimensions are in good agreement with the predictions of solvability theory, and can be extended to three dimensions and small undercoolingsComment: typo in a parameter of Fig. 1; 4 pages, 4 postscript figures, in LateX, (revtex

    Crossover Scaling in Dendritic Evolution at Low Undercooling

    Full text link
    We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well as in three-dimensional pivalic acid dendrites grown on NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on self-similar evolution in both the experiments and simulations. We find that the time dependent scaling of our low undercooling simulations displays a cross-over scaling from a regime different than that characterizing Laplacian growth to steady-state growth
    corecore