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We discuss a free boundary problem for two moving solid-liquid interfaces that strongly interact via the
diffusion field in the liquid layer between them. This problem arises in the context of liquid film migration
(LFM) during the partial melting of solid alloys. In the LFM mechanism the system chooses a more
efficient kinetic path which is controlled by diffusion in the liquid film, whereas the process with only one
melting front would be controlled by the very slow diffusion in the mother solid phase. The relatively
weak coherency strain energy is the effective driving force for LFM. As in the classical dendritic growth
problems, also in this case an exact family of steady-state solutions with two parabolic fronts and an
arbitrary velocity exists if capillary effects are neglected [D. E. Temkin, Acta Mater. 53, 2733 (2005)]. We
develop a velocity-selection theory for this problem, including anisotropic surface tension effects.
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The early observations of liquid film migration (LFM)
were made during sintering in the presence of liquid phase
[1] or during partial melting of alloys [2] (see [3] for a
review). Nowadays LFM is a well established phenomenon
of great practical importance. In LFM one crystal is melted
and another one is solidified. Both solid-liquid interfaces
move together with the same velocity. In the investigated
alloy systems the migration velocity is of the order of
10�6–10�5 cm=s, and it is controlled by the solute diffu-
sion through a thin liquid layer between the two interfaces
[4]. The migration velocity is much smaller than the char-
acteristic velocity of atomic kinetics at the interfaces.
Therefore, both solids should at the interfaces be locally
in thermodynamic equilibrium with the liquid phase. On
the other hand, these local equilibrium states should be
different for the two interfaces to provide the driving force
for the process. It is by now well accepted (see, for ex-
ample, [3,4]) that the difference of the equilibrium states at
the melting and solidification fronts is due to the coherency
strain energy, important only at the melting front because
of the sharp concentration profile ahead of the moving
melting front (diffusion in the solid phase is very slow
and the corresponding diffusion length is very small). The
solute atoms diffuse ahead of the moving film, and the
coherency strain energy in such a frontal diffusion zone
arises from the solute misfit (for the schematic diagram of
liquid film migration see Fig. 11 in [5]). If such a frontal
diffusion zone is sufficiently small due to the very slow
diffusion in the solid phase, the coherency strain energy is
not relaxed due to the possible nucleation of misfit dis-
locations [3] (for an alternative point of view see also [6]).
Thus, the equilibrium liquid composition at the melting
front, which depends on the coherency strain energy and on
the curvature of the front, differs from the liquid compo-
sition at the unstressed and curved solidification front. This
leads to the necessary gradient of the concentration across
the liquid film, and the process is controlled by the diffu-
sion in the film.
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If only the melting front existed, the melting process
would be controlled by the very slow diffusion in the
mother solid phase and elastic effects would be irrelevant.
In the LFM mechanism the system chooses a more efficient
kinetic path which is controlled by the much faster diffu-
sion in the liquid film. However, in this case the relatively
weak coherency strain energy is involved as an effective
driving force for this process. In this respect the LFM
mechanism is similar to other well-known phenomena
such as diffusion induced grain boundary migration and
cellular precipitation [3]. In these processes a relatively
fast diffusion along the grain boundaries controls the ki-
netics, and the coherency strain energy also plays a con-
trolling role.

Thus, a theoretical description of LFM requires the
solution of a free boundary problem for two combined
moving solid-liquid interfaces with a liquid film in be-
tween. In Ref. [7] this problem was considered for simpli-
fied boundary conditions: the temperature and the chemical
composition along each interface were kept constant. Their
values are different for the melting and solidification fronts
and differ from those far from the migrating liquid film.
This means that any capillary, kinetic, and crystallographic
effects at the interfaces were neglected. It was found that
under these simplified boundary conditions two cofocal
parabolic fronts can move together with the same velocity.
The situation is rather similar to a steady-state motion of
one parabolic solidification front into a supercooled melt
[8,9] or one parabolic melting front into a superheated
solid. In this approximation the Peclet numbers were
found, but the steady-state velocity remained undeter-
mined at that stage. Thus, the problem of velocity-selection
arises.

Solvability theory has been very successful in predicting
certain properties of pattern selecting in dendritic growth
and a number of related phenomena (see, for example,
[10–12]). In the two-dimensional dendritic case, the basic
approach is as follows. One attempts to model the dendritic
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tip by a needle crystal, that is, a shape-preserving steady-
state growth shape which is a solution of the equation of
motion governing diffusion in the neighborhood of a so-
lidification front. This needle crystal is assumed to be close
in shape to the parabolic Ivantsov solution. If anisotropic
capillary effects are included, a single dynamically stable
solution is found for any external growth conditions. This
theory has been extended to the three-dimensional case
[13,14]. We note that capillarity is a singular perturbation
and the anisotropy of the surface energy is a prerequisite
for the existence of the solution.

The main purpose of this Letter is to develop a velocity-
selection theory for LFM, including in the consideration
anisotropic surface tension effects. We note that this is not
just a routine extension of the existing theory because the
diffusion interaction between two interfaces changes the
problem substantially.

We discuss the two-dimensional problem of the steady-
state motion of a thin liquid film during the process of
isothermal melting of a binary alloy, see Fig. 1. We assume
that the diffusion in the solid phases is very slow and the
concentration c in the liquid film obeys the Laplace equa-
tion. We introduce the normalized concentration C � �c�
cL�=�cL � cS� with cL and cS being the liquidus and sol-
idus concentrations of the equilibrium phase diagram at a
given temperature. Then the equilibrium concentration and
the mass balance conditions at the solidification front read

C � d2K2; Vn � �D@C=@n: (1)

At the melting front the equilibrium concentration is
changed by the presence of the elastic coherency strain
energy [3] and also the diffusional flux changes because in
the solid ahead of the melting front the concentration is c0
which is different from cS:

C� �b	2�d1K1; Vn�1�	�� �D@C=@n: (2)

Here Vn is the normal velocity, D is the diffusion coeffi-
cient in the liquid film, K is the curvature assumed to be
x
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FIG. 1. Schematic presentation of two moving nearly para-
bolic fronts; S1 and S2 are the melting and growing solids, and L
is the liquid film.
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negative for the interfaces in Fig. 1, 	 � �c0 � cS�=�cL �
cS� is the dimensionless driving force, b �
Y
�da=dc�2=a2f00L is the dimensionless constant which
describes the coherency strain energy [4], 
 is the atomic
volume, Y is the bulk elastic modulus, a is the atomic
constant, fL�c� is the free energy of the liquid phase per
atom, f00L is the second derivative of fL�c� at c � cL, di are
the anisotropic chemical capillary lengths:

di����d0�1��cos4����i��; d0��
=f00L�cL�cS�
2

(3)

with the isotropic part of the surface energy � and the
anisotropy parameter �� 1, � is the angle between the
normal to the interface n and the direction of motion, and
�i is the direction of the minimum of di��� for each of the
interfaces.

We measure all lengths in the units of the radius of
curvature of the Ivantsov parabolic solidification front,
R2. Introducing a parabolic coordinates system,

y � ��2 � �2�=2; x � ��; (4)

we look for a solution of the Laplace equation for the
concentration field C��;�� in the liquid phase with the
following boundary conditions:

C�� � �2���; �� � d2���K2���;

C�� � �1���; �� � � b	2 � d1���K1���:
(5)

The mass balance conditions at the interfaces are

2P��2���	��0
2����� ��@C=@���0

2@C=@��;

2P�1�	���1���	��
0
1����� ��@C=@���0

1@C=@��;

(6)

where the Peclet number is P � VR2=2D and V is the
steady-state velocity in the y direction. We present the two
moving interfaces in the form

�2 � 1	 �2���; �1 � �0 	 �1��� (7)

and the concentration field in the form

C��;�� � C0��� 	 u��;��; (8)

where C0��� � � b	2��� 1�=��0 � 1� is the solution
without surface tension (u � �1 � �2 � 0) which satisfies
the boundary conditions: C0�1� � 0 and C0��0� �
� b	2. The balance equations at the interfaces, 2P �
2P�1� 	��0 � � @C0=@�, lead to the relations for the
Peclet number and �0:

P �
VR2

2D
�

b	2

2��0 � 1�
; �0 �

������
R1

R2

s
�

1

1�	
: (9)

These relations can also be obtained in the proper limit of
Eqs. (27) and (28) of Ref. [7] and give the expressions for
the radii of curvature for the two interfaces, R1 and R2, for
1-2
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a given velocity V which remains undetermined at this
stage.

The surface tension plays a crucial role in the velocity-
selection problem. In order to find the small corrections to
these solutions due to the small (but singular) surface
tension effects, we should first find the small correction u
to the diffusional field in the linear approximation with
respect to � and dK (see, for example, [12]). In this
approximation, the field u satisfies the Laplace equation
and the boundary conditions:

u�� � 1; �� � 2��� � 2P�2 	 d2K2;

u�� � �0; �� � 1��� � 2P�1 � d1K1: (10)

The balance equations read

2P��2 	 ��02� � � @u=@�j��1;

2P�1� 	���1 	 ��01� � � @u=@�j���0
: (11)

The Laplace equation with the boundary conditions,
Eq. (10), is easily solved by Fourier transform, with respect
to the variable �, which we define as

g��� �
1�������
2 

p
Z 1

�1
d� exp��i���g���:

Then,

u��; �� �
�1 sinh����� 1��

sinh����0 � 1��
�

�2 sinh����� �0��

sinh����0 � 1��
:

(12)

Finally, Eqs. (11) read

2P
d ��2
d�

�
�1

sinh����0�1��
�

�2cosh����0�1��

sinh����0�1��
;

2P�1�	�
d ��2
d�

�
�1cosh����0�1��

sinh����0�1��
�

�2

sinh����0�1��
:

(13)

Eliminating ��1 from the first of these two equations,

2P ��1 � 2P� ��2�0 sinh����0 � 1�� 	 2P ��2 cosh����0 � 1��

	 d1K1 	 d2K2 cosh����0 � 1��; (14)

we find from the second one,

2P� ��2�00 � 2P ��2 � d2K2 �

�
�d1K1�

0

sinh����0 � 1��

	 �d2K2�
0 cosh����0 � 1��

sinh����0 � 1��

�
: (15)

Here the prime denotes derivatives with respect to �.
These equations are convenient for further analysis. We

are interested in the motion of the thin film, which means
that ��0 � 1�  	 � 1. In this case we can expand the
hyperbolic functions for small values of their argument
almost everywhere. This leads to �1  �2, K1  K2, and
18450
then, from Eq. (15), we find in direct space

d
d�

��1	 �2��2� �
d1 	 d2
2P	

�K2: (16)

A few remarks are in order. First of all, this is somewhat the
expected result because for the thin films the resulting
equation should be local and, in principal, can be derived
in the framework of boundary layer techniques. However,
the used approximation for small arguments of hyperbolic
functions breaks down in the small vicinity (of the order of
	) near the singular points in the complex plane, � � �
i. We discuss this point later. Finally, we can return to
Cartesian coordinates because the expression for the cur-
vature is much simpler in this representation. In the linear
approximation �1	 �2��2  !2�x� where !2�x� is the cor-
rection to the parabolic solution in the Cartesian coordi-
nates. Then Eq. (16) reads

d!2
dx

�
d1 	 d2
2P	

xK2: (17)

One finds the first regular corrections to the parabolic
shape by replacing d1 � d2 � d0 and K2 � � 1=�R2�1	
x2�3=2� for the parabola:

!2�x� � "=�	�1	 x2�1=2�; 	 � 1; (18)

where " � d0=�PR2� is the usual stability parameter
which appears in such problems.

In the vicinity of the point x � � i where the curvature
becomes singular and anisotropy, Eq. (3), becomes impor-
tant we rescale the variables [12]:

x� � i�1�
����
�

p
z�; !2��F; %� z	dF=dz; (19)

with a small anisotropy parameter, �� 1. Then Eq. (17)
reads

dF
dz

� �
"

	�5=4
A�%�

1	 d2F=dz2

�2%�3=2
; (20)

where the anisotropy factor is A�%� � 1� �exp��4i�1� 	
exp��4i�2��=%

2. This equation is similar to the limit of the
kinetic dendrite in Eq. (9.1) of Ref. [12]. This similarity is
purely formal because the real interface kinetic effects are
not included in our description. Instead, the strong diffu-
sion interaction leads to such a selection problem. The
same arguments as in [12] give the selection condition

" � "? �	�5=4; 	 �
����
�

p
: (21)

Moreover, the selected growth direction lies between the
directions of the minima of d1��� and d2��� for the two
interfaces, �1 � � �2, because the coefficient appearing
in A�%� must be real [12]. The restriction condition in
Eq. (21), 	 �

����
�

p
, follows from the fact that the character-

istic scale 1=��
����
�

p
and �	 must be small.

While the regular correction given by Eq. (18) is valid
for 	 � 1, the restriction for the validity of inner Eq. (20)
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and for the scaling relation, Eq. (21), is much stronger,
	 �

����
�

p
� 1. In the opposite limit, 	 �

����
�

p
, we can

derive another local inner equation where the important
scale jx	 ij �

����
�

p
is much smaller than 	. The argument

of the hyperbolic functions becomes large, and we can
neglect the term K1 in Eq. (15). Then, in the vicinity of
the singular point x � � i in the complex plane, this
equation reads

!2�x� � � d2K2=P; (22)

which is the usual inner equation for a single dendrite in the
one-sided model [12]. With the same rescaling as in
Eq. (19), we find

F �
"

�7=4
A�%�

1	 d2F=dz2

�2%�3=2
; (23)

where the anisotropy factor is A�%� � 1�
2 exp��4i�2�=%

2. This corresponds to the selection condi-
tion

" � "? � �7=4; 	 �
����
�

p
; (24)

and the selected growth direction corresponds to the mini-
mum of d2���, �2 � 0. Whereas Eq. (23) and the selection
condition Eq. (24) are valid not only for small 	 [12], the
regular correction in the form of Eq. (18) requires 	 � 1.

The selection conditions, Eqs. (21) and (24), together
with the relations for the Peclet numbers, Eq. (9), solve the
posed problem of pattern formation for two combined
nearly parabolic fronts:

V �
2D
d0
P2�	�"? (25)

and

R2 � d0=�P�	�"?�; R1 � R2=�1� 	�2: (26)

While these results are formally similar to the free
dendritic case, the selected stability parameter "? scales
as �7=4 only for 	 �

����
�

p
. Otherwise, the other scaling

relation, Eq. (21), holds. In principle, it could be conceiv-
able that the strong diffusional interaction between the
front leads to the selection even without anisotropy.
However, our analysis of the inner equation does not sup-
port this hypothesis. The Peclet number is P�	� � b	
which reflects the fact that the coherency strain energy
plays a crucial role in the LFM mechanism. This parameter
b is usually small but the melting process by the LFM
mechanism is controlled by the fast diffusion in the liquid,
whereas the process with only one melting front would be
controlled by the very slow diffusion in the mother solid
phase. As we already noted, with the help of the LFM
mechanism the system chooses a more efficient kinetic
path to relax to the equilibrium state.

Finally, we estimate the velocity V from Eq. (25) and the
thickness of the film R2	 from Eq. (26) using character-
18450
istic values of the parameters: D� 10�5 cm2=s, d0 �
10�7 cm, b� 0:05, 	� 0:05, and "? � 10�2. This leads
to V � 10�5 cm=s and R2	� 10�4 cm, which qualita-
tively agree with typical values in LFM experiments.

In conclusion, we developed a selection theory for the
process of liquid film migration where the strong diffusion
interaction between melting and solidification fronts plays
a crucial role. This process is very important in practical
applications, in particular, during sintering in the presence
of the liquid phase [1,3]. However, despite its practical
importance, experimental investigations of this process are
far from the level of accuracy of the model experiments in
classical dendritic growth. Perhaps, this is due to the fact
that practically important alloys are not very suitable for
accurate testing of the pattern formation process, while the
most detailed and elegant experiments in dendritic growth
were performed with model transparent materials. The
other reason could be that the selection theory developed
for dendritic growth was not applied to LFM so far. Our
approach extends selection theory developed for dendritic
growth to LFM, and we hope that our results will stimulate
further theoretical and experimental investigations in this
very interesting field. From the theoretical side it would be
a challenge to attack this problem by a direct numerical
approach, for example, by means of the boundary integral
method or by means of the phase-field model.
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