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to the phase-field description

Efim A. Brener and D. E. Temkin
Peter Grünberg Institut, Forschungszentrum Jülich, D-52425 Jülich, Germany
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We give a general phenomenological description of the steady-state 1D front propagation problem in two
cases: the solidification of a pure material and the isothermal solidification of two-component dilute alloys. The
solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The
isothermal solidification of two-component alloys is controlled by the diffusion in the bulk and the interface
kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic
coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the
alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers
a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior
of velocity versus concentration that has previously been discussed by different approaches. We also discuss the
relation of this Onsager approach to the thin-interface limit of the phase-field description.
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I. INTRODUCTION

In recent years the phase-field approach to solidification
problems has attracted the attention of much research (see,
for example, Ref. [1] and references therein). It was originally
introduced as a mathematical tool to solve the free boundary
problem without directly tracking the interface position.
However, more recently it has also been considered as a
physical model that can bring additional information compared
to the sharp interface approach. In particular, it was observed
that steady-state 1D front propagation with positive velocity,

V = V0(�T − 1), (1)

is possible only if (�T − 1) > 0 (see, for example, Ref. [2])
is not the general situation. Here V is the steady-state front
velocity; V0 is the characteristic velocity that is proportional
to the kinetic growth coefficient; �T = (TM − T0)cp/L is the
dimensionless undercooling; TM is the melting temperature; T0

is the temperature in the original phase far from the interface;
cp is the heat capacity, which is assumed to be the same
in both phases; and L is the latent heat. Karma and Rappel
(KR) [3] introduced the thin-interface limit of the phase-field
description and found that

V = V0(�T − 1)

1 − a WV0
DT

, (2)

where DT is the thermodiffusion coefficient, a is a positive
number of order unity that depends on the details of the
model, and W is the thickness of the interface in the phase-field
description. In the phased field model discussed in Ref. [3],
there is no any restriction on the parameter V0W/DT and the
velocity may be positive for (�T − 1) < 0. The same result
was obtained for the isothermal solidification of alloys by
many authors starting from a paper by Löwen et al. [4] in
the framework of phase-field description and also by Aziz and
Boettinger [5], who use a more phenomenological approach. In
the case of alloys the deviation from equilibrium is defined by
�C = (CL − C0)/(CL − CS) instead of �T . In the two-phase
region of the phase diagram, 0 < �C < 1. Here CL and CS

are the equilibrium concentrations of the initial and growing
phase, respectively, and C0 is the concentration of the initial
phase far from the interface. They found that the steady-state
growth is possible also inside the two-phase region of the
equilibrium phase diagram.

From the numerous papers on the derivation of the sharp
and thin-interface limits from a phase-field model we should
also mentioned the work by Elder et al. [6] and Umantsev [7]
and the paper by Korzhenevskii, Bausch, and Schmitz [8],
which contains many details and technical points. The basic
results of all these descriptions have the structure of Eq. (2)
in the vicinity of (�T (C) − 1) � 1 and eventually lead to the
non-single-value behavior of the velocity as a function of the
driving force in the case of a negative “kinetic coefficient”
(Fig. 1). In this case the branch which is described by
Eq. (2) (dotted line in Fig. 1) is linearly unstable (see, for
example, Refs. [3,4,8]) while the “high velocity” branch of the
mentioned non-single-value behavior is linearly stable.

Qualitatively the same results have been obtained by the
numerical solution of 1D motion of the atomically rough
interface in binary alloys [9]. In this model instead of the
phase-field order parameter the authors used the fraction of
the atomic places which belongs to the growing phase. This
fraction changes from 0 to 1 during the growth. The evolution
equations for this quantity together with the concentration
fields in the two phases are given by Eqs. (5.1)–(5.3) in
Ref. [10]. The numerical analysis of Ref. [9] has shown that
both types of curves in Fig. 1 are possible. However, the
unstable (dotted line) branch was not seen in this dynamical
simulation.

An interesting explanation of a non-single-value behavior
of velocity versus concentration suggested by the phase-field
modeling and relative approaches cited above explicitly takes
inhomogeneities of the concentration field, on the scale of finite
interface thickness, into account. The purpose of this paper
is to give a complementary phenomenological description of
the steady-state 1D front propagation problem in two cases:
(i) the solidification of a pure material, which is controlled by
the heat transport in the bulk and the interface kinetics, and
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FIG. 1. Schematic dependence of the steady-state velocity V vs.
the dimensionless undercooling �T . Curve 1 corresponds to the
case aWV0/DT < 1 while curve 2 corresponds to the opposite case,
aWV0/DT > 1.

(ii) the isothermal solidification of two-component dilute
alloys, which is controlled by the diffusion in the bulk
and the interface kinetics. Describing the interface boundary
conditions we use only the general phenomenology of linear
nonequilibrium thermodynamics in the spirit of the Onsager
matrix of kinetic coefficients that has the proper symmetry
and is positive definite as required by the second law of
thermodynamics. This approach does not assume any specific
model of the interface and makes no assumption on its
thickness. The only requirement, as for any macroscopic
theory, is that the thickness is small compared the macroscopic
lengths. We will see that two mentioned problems are very
close to each other and can be formally mapped onto each
other. The mentioned restrictions on the Onsager matrix of
kinetic coefficients are not sufficient to determine the sign of
the slope of the velocity-concentration line near the solidus in
the alloy problem (or of the velocity-temperature line in the
case of solidification of a pure material). This result offers a
simple way to describe the mentioned above phenomenon of
a non-single-value behavior (Fig. 1).

The sharp (W → 0) and the thin-interface limits of the
phase-field description should lead to the effective macro-
scopic description with the boundary conditions in the spirit of
Onsager relations, where the elements of the Onsager matrix
are expressed in terms of the phase-field model parameters.
Indeed, these limits really correspond to such a description.
However, the mentioned condition of positive-definiteness of
the matrix of kinetic coefficients turns out to be a nontrivial
issue for the thin-interface limit and will be discussed in more
detail.

II. GROWTH OF A PURE MATERIAL
WITH HEAT TRANSPORT

We assume that phase 1 grows at the expense of phase
2 by a 1D front propagation with the steady-state velocity
V . In the bulk we have the thermal-conductivity equation. In
order to write down the boundary conditions at the interface,
we follow the description and notations given in Ref. [11] as

follows:

(μ2 − μ1)/TM = AV + BJE, (3)

(T2 − T1)/T 2
M = BV + CJE, (4)

where μi is the chemical potential of the corresponding phase
i at the interface. According to the energy conservation at the
interface (see also Eqs. (51) and (52) in Ref. [11]),

−λ1∇T1 = V TMS1 − JE, (5)

−λ2∇T2 = V TMS2 − JE. (6)

Here S1(T1) and S2(T2) are the entropies of two phases and
λi is the thermoconductivity of phase i. The total heat flux
JE , flowing through the interface from phase 2 into phase 1,
consists of the following two parts: the heat flux due to
the gradients of temperature and the energy flux due to the
finite velocity of the interface that takes into account the
different values of the entropy in each phase. We note that each
contribution to the total flux is discontinuous at the interface
while the total flux JE is, of course, continuous. This total flux
flowing through the interface together with the growth velocity
should be inserted in the linear relations between driving forces
and fluxes, Eqs. (3) and (4).

The elements of the Onsager matrix, which is symmetric
and positive definite, obey the conditions A,C > 0 and B2 <

AC. RK = CT 2
M is the Kapitza resistance and the cross

coefficient B describes the way the two entropies are shared
between the two sides of the interface during growth (for
a more detailed discussion of the physical meaning of the
different Onsager coefficients in this case, see Ref. [11]).

For the steady-state one-dimensional problem ∇T1 = 0
and T1 = T0 + L/cp, where L = TM [S2(TM ) − S1(TM )] is the
latent heat and cp is the heat capacity, T0 is the temperature
in the original phase far from the interface. We note that
in order to obtain the relation T1 = T0 + L/cp one should
expand the entropies near the equilibrium temperature TM

in the energy conservation condition (λ1∇T1 − λ2∇T2) =
V TM [S2(T2) − S1(T1)]. Now expanding the difference of the
chemical potentials near the equilibrium temperature TM , we
find

μ2(T2) − μ1(T1) = S2(TM )(TM − T2) − S1(TM )(TM − T1),

(7)

and, finally, we get

V = L2(�T − 1)

cpT 2
M

[
A + CT 2

MS1S2 + BTM (S1 + S2)
] , (8)

where �T = (TM − T0)cp/L. We have used the usual notation
for solidification of pure materials. We see that the sign
of (�T − 1) in general is not determined by the Onsager
restriction B2 < AC. However, it is well defined in two cases:
(i) B = 0 and (ii) in the “isothermal” case, T1 = T2. In the later
case the growth rate is controlled by the “isothermal” kinetic
coefficient which is strictly positive due to the mentioned
restriction, B2 < AC [11]:

V = (μ2 − μ1)

TMA[(1 − B2/(AC)]
= L2(�T − 1)

cpT 2
MA[(1 − B2/(AC)]

, (9)
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Karma and Rappel obtained in their thin-interface limit
B = C = 0 and a coefficient A which may even be negative (β
in their notation). They discussed this “counterintuitive” issue
and gave some natural explanation for this phenomenon. We
will return to this point later.

III. ISOTHERMAL ALLOY SOLIDIFICATION
IN THE DILUTE LIMIT

We discuss the steady-state propagation of a 1D front with
velocity V during solidification of a two-component alloy at a
given temperature T . The concentration of B atoms is C1(x) in
phase 1 and C2(x) in phase 2. In the bulk these concentrations
are described by diffusion equations with diffusion coefficients
D1 and D2. In order to write down the boundary conditions
in this case we use the same phenomenological approach but
adapted to the alloy situation. Onsager relations connect two
fluxes JA and JB (at the boundary) of atoms A and B to two
driving forces δμA and δμB , which are the usual differences
in chemical potentials at the boundary. While the bulk is
described by diffusional equations for the concentration fields
for each phase, we still need three boundary conditions at the
interface. One is the conservation of B atoms at the interface.
We have also to relate the two concentrations C1 and C2 on both
sides of the interface to the growth velocity and gradients of the
concentrations. In the equilibrium these two concentrations are
just the liquidus and solidus concentrations. When the velocity
is finite, these two concentrations deviate from the equilibrium
values. We write (see, for example, Ref. [12] and references
therein),

δμA/T = AJA + BJB, (10)

δμB/T = BJA + CJB. (11)

This Onsager matrix should be positive definite: A and C must
be positive and B2 < AC. According to the conservation of B

atoms at the interface we also have [10]

−D1∇C1 = V C1 − JB, (12)

−D2∇C2 = V C2 − JB, (13)

V = JA + JB. (14)

Equation (14) is written for substitutional alloys. For interstitial
alloys V = JA. For dilute alloys the chemical potential are [13]

δμA/T = (C1 − C2) + (CL − CS), (15)

δμB/T = ln(C2/C1) + ln(CS/CL). (16)

Here phase 1 grows at the expense of phase 2. C1 and C2

are the concentrations of B atoms at the interface and CS and
CL are their equilibrium values; (CL − CS) ∼ (TM − T )/T

is proportional to the deviation of the temperature from its
equilibrium value for a pure A material. D1 and D2 are the
diffusion coefficients.

According to the mass conservation at the interface for the
steady-state 1D growth, we have JA = V (1 − C1) and JB =
V C1 because there is no gradient in the growing phase 1.
These relations are written for the substitutional alloys. For the
interstitial alloys, JA = V . However, in the dilute limit there
is no difference between these two alloys because C1 � 1 and

can be neglected in the expression for JA for the substitutional
alloys. Moreover, the global mass conservation requires that
C1 = C0, where C0 is the concentration in the original phase 2
far from the interface. Solving the resulting system of equation,
we find the transcendental relation between velocity V and the
initial concentration C0 as follows:

ln

{
CS

CL

[
1 + CL − CS

C0
− V (A/C0 + B)

]}
= V [B + CC0].

(17)

If the concentration C0 is close to CS and the velocity V is
small we find, expanding the logarithm up to linear order in
(C0 − CS) and V ,

V = (CL − CS)(CS − C0)

CS[A + CCLCS + B(CL + CS)]
. (18)

For the general case of nondilute alloys, this equation reads,

V = [f ′′
1 (CS)/T ](CL − CS)(CS − C0)

A(1 − CL)(1 − CS) + CCLCS +B[(CL + CS) − 2CLCS]
,

(19)

where f ′′
1 (C) is the second derivative of the free energy f1(C)

of the growing phase 1 with respect to the concentration. From
this expression it is clear that in the presence of the cross
coefficient B the sign of (CS − C0) is not determined by the
conditionB2 < AC and also depends on CL and CS . Moreover,
if the sign in the square brackets of Eq. (18) is negative and
C0 > CS for small positive velocity V then we find, for C0 =
CS apart from the solution V = 0, the second solution with
positive V . If the expression in the square brackets is negative
but small, we can expand the logarithm up to linear order in
(C0 − CS) and up to quadratic order in V and find,

(CL − CS)(CS − C0)

CS

= V [A + CCLCS + B(CL + CS)]

+V 2[A + BCS]2/(2CL). (20)

This expression shows that with increasing V the curve
V = V (C0), first, goes into the two-phase region and then
turns back, having another solution with finite velocity at
C0 = CS , and then goes into the one-phase region (see Fig. 1).
Eventually, for C0 → 0, the velocity, according to Eq. (17),
becomes V = (CL − CS)/A ∼ (TM − T )/(TA), as for the
solidification of a pure material.

First, we mention the clear analogy between two discussed
problems. From the basic equations we see this analogy if
we relate V → JA, JE → JB , TMS1(2) → C1(2), δμ → δμA,
and δT /T 2

M → δμB/T and apart from some thermodynamical
prefactors (�T − 1) → (CS − C0). The case δT = 0 in the
pure material problem then corresponds to zero values of δμB .
This, in turn, corresponds to a frequently used assumption that
the partition coefficient k = C1/C2 is equal to its equilibrium
value, k0 = CS/CL. In this case, as in the pure material
problem, stationary growth is possible only in the one-phase
region of the phase diagram. Actually, it seems that this result
is in agreement with the phenomenological description of
Refs. [5,8].
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IV. DISCUSSION AND CONCLUSION: THIN-INTERFACE
LIMIT OF PHASE-FIELD MODELS VERSUS

THE ONSAGER APPROACH

We discuss the thin-interface limit using the KR description
for the temperature field for a flat interface. The corresponding
problem for alloys leads to basically the same results (see, for
example, Refs. [6,8,14]). Originally it was designed to increase
computational power of the method by using larger values of
the interface width W and to mimic local equilibrium boundary
conditions [3]. Let us have a closer look at this limit from more
physical prospectives. In the thin-interface limit of Ref. [3] the
temperature distribution T (x) close to the interface is given by
Ti(x) = T (0) + Gix, where Gi is the temperature gradient in
the i-th phase (i = 1,2) at x = 0. At x = 0 the temperature
T1 = T2 = T (0) and in this description the Kapitza jump
is absent, T1 − T2 = 0. One should note that the value of
T (0) in this linear extrapolation procedure differs from the
real value of the smooth temperature field at the middle of
the interface obtained by the phase-field simulations. The
given linear extrapolation of the temperature field reasonably
coincides with direct phase field results only for H � |x| �
W , where W is the width of the phase field and H � W

is some macroscopic length scale. KR derived a kinetic
boundary condition that relates the effective temperature T (0)
and the growth velocity V by the kinetic coefficient AKR:
[TM − T (0)]L/T 2

M = AKRV . Using the asymptotic matching
procedure, they obtained that the kinetic coefficient has the
following structure:

AKR = L2

T 2
Mcp

(
β0 − a

W

DT

)
, (21)

where β0 = 1/V0 > 0 is the KR kinetic coefficient in the sharp
interface limit (W → 0) and a is a positive numerical factor
of the order of unity that depends on some tiny details of the
specific phase-field model. The second negative term is due
to the finite thickness W of the interface and the described
linear extrapolation procedure. We also note that in this
description the other Onsager coefficients vanish, B = C = 0
in both sharp and and thin-interface limits. KR checked that
for the steady-state 1D growth, the analytical prediction,
Eq. (8) with the obtained value of AKR and B = C = 0,
is in good agreement with direct numerical simulations of
the phase-field model. However, there is a subtle physical
point concerning the interpretation of A, which may become
negative with some choice of phase-field-model parameters.
As correctly mentioned by KR, this conclusion may appear,
at first sight, thermodynamically inconsistent. However, as it
has been already mentioned, the temperature T (0) is not a real
temperature inside of the interface and deviates strongly from
the temperature obtained by phase-field simulation, which is
below T (0).

Let us discuss this nontrivial point in more detail. We can
imagine an extended interface with the thickness 2δ with two
boundaries located at x = ±δ. We emphasize that this length
scale δ differs from the phase-field interface width W and is,
for the moment, arbitrary, still being much smaller than any
relevant macroscopic length scales. We can easily derive the
corresponding matrix of Onsager coefficients using the values
of T and μ at the two boundaries of the extended interface

as T1 = T (0) − G1δ and T2 = T (0) + G2δ and then μ1(T1)
and μ2(T2). Using Eqs. (5) and (6) we express the temperature
gradients Gi in terms of JE and V , and using Eqs. (3) and
(4), we, finally, find the renormalized values of the Onsager
coefficients,

A(δ) = AKR + C(δ)T 2
M

(
S2

1 + S2
2

)/
2, (22)

B(δ) = −C(δ)TM (S1 + S2)/2, (23)

C(δ)T 2
M = 2δ/λ, (24)

where we have assumed that λ1 = λ2 = λ, as in Ref. [3]. A
few remarks are in order.

(i) The steady-state result, Eq. (8), is invariant with
respect to this renormalization of the Onsager coefficients,
i.e., independent of δ. It means that this δ family of Onsager
matrices is in good agreement with numerical simulations of
the phase-field model as well as the original KR case, δ = 0.

(ii) With the choice δ > 2aW the matrix of Onsager
coefficients becomes positive definite,A,C > 0 andAC > B2,
for arbitrary parameters of the phase-field model. This result
has a clear physical meaning. For δ � W , we discuss only
the range of |x| where the used linear extrapolation of the
temperature field is in agreement with the temperature field
obtained by the phase field, while for δ � W the temperature
at the boundaries strongly deviates from the phase-field
description, which is fully thermodynamically consistent by
itself. In other words, for δ � W , the obtained matrix of
kinetic coefficients does describe real physical dissipation in
the region δ, while for δ � W this “effective” matrix does
not describe the real physical dissipation but still leads to the
correct expression for the steady-state growth velocity.

This possible renormalization with δ, much smaller than
any macroscopic length scale H , is not specific only to the
phase-field models and represents a small effect of the order
of δ/H � 1. It has the same structure as the “negative”
phase-field effects W/H . The ideology of any macroscopic
description relies on this small parameter as an expansion
parameter of the theory. These corrections should be irrelevant
in the general case of the diffusional transformation where
the bulk dissipation plays the major role (for example, in
the case of dendritic growth at small undercooling). We have
seen, however, that in the specific problem of steady-state
1D front propagation, this small term (proportional to W ) is
responsible for the sign of the slope in the phase-field model
description. This happens because the bulk dissipation (being
still much larger than the interfacial dissipation) just bring us
to the vicinity of point �T = 1 and does not contribute to the
slope. In this case, the growth velocity is entirely controlled
by the interface kinetics. We note that the interpretation
of the nontrivial behavior in the vicinity of � = 1 due to
sufficiently negative values of the phenomenological cross
coefficient B does not assume any specific model of the
interface. At the same time, the explanation suggested by
the phase-field modeling explicitly takes inhomogeneities of
the temperature and concentration fields, on the scale of finite
interface thickness, into account.

In other words, there is no doubt about thermodynamic
consistency of the phase-field model for arbitrary values of
the parameter V0W/DT apart from the obvious restrictions,
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V0 > 0 and DT > 0. However, the interpretation of the thin-
interface limit and its relation to the matrix of dissipative
Onsager coefficients should be taken with care. We illuminate
this warning by the following additional example. Let us
assume that, initially, the two-phase system is at some
temperature T slightly below the melting temperature TM .
This system evolves toward equilibrium with a solidification
velocity V that decays as V ∼ t−1/2 at large time t . This
behavior would be observed in direct phase-field simulations
for arbitrary parameters of the model and independent of
the sign of the effective kinetic coefficient, Eq. (21). A
slightly different, but close in spirit, nonstationary evolution
has been discussed in Ref. [3] confirming this behavior.
However, if one solved this problem not by a direct phase-
field simulation but by solving the free boundary problem
with effective boundary conditions described by the the
matrix of kinetic coefficients, A = AKR and B = C = 0
(the thin-interface limit of Ref. [3]), the result would differ
markedly ifAKR < 0. The system would melt, instead of being
solidified, exhibiting strong instabilities and would never reach
the described physical attractor. On the other hand, if one
solved the same problem using the renormalized positive-
definite matrix of Onsager coefficients, Eqs. (22)–(24),
the result would be basically the same as in direct phase-field
simulations and physically relevant. Therefore, we conclude
that the interpretation of the thin-interface limit of Ref. [3] as
the correspondence between the phase-field description and
the classical macroscopic approach is incorrect for the wide
class of nonstationary problems if AKR < 0. However, the
renormalized positive-definite matrix of Onsager coefficients
leads to such a correspondence in the macroscopic limit for
arbitrary AKR.

Additionally, we address one more point. The phase-field
model of Ref. [3] contains fewer independent parameters to
describe the kinetic properties of the interface (only A or β0)
than is allowed by the general phenomenology (A,B,C). While
an independent parameter C can be introduced in a slightly
modified version of the phase-field model, the introduction
of the independent cross coefficient B is a serious problem.
As pointed out in Ref. [15], according to Curie’s principle

[16], there can be no kinetic coupling between the scalar
nonconserved phase-field order parameter φ and vectorial
diffusional fluxes of the conserved quantities energy and/or
concentration. Thus, one should not expect an independent
cross coefficient B to appear in the effective boundary condi-
tions, Eqs. (3), (4), (10), and (11). However, in the general case
of the phenomenological macroscopic description, we do not
doubt the existence of such a kinetic coupling at the interface
between the normal growth velocity and normal diffusional
fluxes through the interface. It is conceivable that this coupling
can be introduced in modified versions of the phase-field model
where ∇φ/|∇φ|, the unit vector normal to the interface, can
be used to produce the corresponding vectorial quantities.
This issue may also be relevant to the antitrapping current
introduced in some nonvariational versions of the phase-field
model [14,17] for different purposes. The antitrapping current
introduces a new kinetic coefficient and uses the unit vector
normal to the interface. To use this idea for the description of
the cross effect of the interface kinetics in phase-field models,
one should carefully consider the necessary symmetry that is
obligatory for this cross effect. A more detailed discussion of
this question is far beyond the scope of this paper.

Finally, we stress that the interface kinetics and its proper
description is very important for many other interesting
phenomena observed in solidification of binary alloys and also
in solid-solid transformations. A very nice and deep discussion
of solute trapping and its relation to cross terms of the Onsager
matrix is given in Ref. [12]. Another example is the oscillation
of the solidification front in a binary alloy which is growing in
the setup of directional solidification. In many metallic alloys
this leads to the formation of banded structures [18]. For very
recent achievements in this direction and related phenomena,
see Ref. [19] and references therein.

ACKNOWLEDGMENTS

We thank M. Plapp for useful discussions. We acknowledge
the support of the Deutsche Forschungs-gemeinschaft under
Project No. SFB 917.

[1] N. Provatas and K. Elder, Phase-Field Methods in Materials
Science and Engineering (Wiley-VCH Verlag GmbH,
Weinheim, Germany, 2010).

[2] Y. Saito, Statistical Physics of Crystal Growth (World Scientific,
Singapore, 1996).

[3] A. Karma and W. J. Rappel, Phys. Rev. E 53, R3017 (1996);
57, 4323 (1998).
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