115 research outputs found

    Chemical composition and radiative properties of nascent particulate matter emitted by an aircraft turbofan burning conventional and alternative fuels

    Get PDF
    Aircraft engines are a unique source of carbonaceous aerosols in the upper troposphere. There, these particles can more efficiently interact with solar radiation than at ground. Due to the lack of measurement data, the radiative forcing from aircraft exhaust aerosol remains uncertain. To better estimate the global radiative effects of aircraft exhaust aerosol, its optical properties need to be comprehensively characterized. In this work we present the link between the chemical composition and the optical properties of the particulate matter (PM) measured at the engine exit plane of a CFM56-7B turbofan. The measurements covered a wide range of power settings (thrust), ranging from ground idle to take-off, using four different fuel blends of conventional Jet A-1 and hydro-processed ester and fatty acids (HEFA) biofuel. At the two measurement wavelengths (532 and 870 nm) and for all tested fuels, the absorption and scattering coefficients increased with thrust, as did the PM mass. The analysis of elemental carbon (EC) and organic carbon (OC) revealed a significant mass fraction of OC (up to 90 %) at low thrust levels, while EC mass dominated at medium and high thrust. The use of HEFA blends induced a significant decrease in the PM mass and the optical coefficients at all thrust levels. The HEFA effect was highest at low thrust levels, where the EC mass was reduced by up to 50 %–60 %. The variability in the chemical composition of the particles was the main reason for the strong thrust dependency of the single scattering albedo (SSA), which followed the same trend as the fraction of OC to total carbon (TC). Mass absorption coefficients (MACs) were determined from the correlations between aerosol light absorption and EC mass concentration. The obtained MAC values (MAC532=7.5±0.3 m2 g−1 and MAC870=5.2±0.9 m2 g−1) are in excellent agreement with previous literature values of absorption cross section for freshly generated soot. While the MAC values were found to be independent of the thrust level and fuel type, the mass scattering coefficients (MSCs) significantly varied with thrust. For cruise conditions we obtained MSC532=4.5±0.4 m2 g−1 and MSC870=0.54±0.04 m2 g−1, which fall within the higher end of MSCs measured for fresh biomass smoke. However, the latter comparison is limited by the strong dependency of MSC on the particles' size, morphology and chemical composition. The use of the HEFA fuel blends significantly decreased PM emissions, but no changes were observed in terms of EC∕OC composition and radiative properties

    Advancing professionalization in human simulation: perspectives of SP educators from around the world on the Association of SP Educators Standards of Best Practice

    Get PDF
    Introduction Between 2013 and 2017, the Association of SP Educators (ASPE), a global organization of educators dedicated to the work of human simulation, developed Standards of Best Practice (SOBP) for working with human role players in simulation. These individuals are known by diverse terms, including simulated or standardized patients or participants (SPs). This study had two aims: (1) to understand the ways in which the ASPE SOBP are relevant to the practices of SP educators around the world, and (2) to identify improvements to the ASPE SOBP from a global perspective. Methods This qualitative study was undertaken between January 2020 and July 2022. Subjects consented to audio-recorded interviews. A collaborative, inductive coding approach was adopted, followed by thematic analysis, aligned with the methods described by Braun and Clarke. Themes were further updated following reflexive conversations amongst the investigators at meetings over the course of several months and were aligned with the study aims. Results Twelve SP educators from six continents participated. Four primary themes were identified (each with multiple subthemes): influencing SP educator practices; advancing professionalization; identifying challenges to implementation; and bridging gaps in the ASPE SOBP. Discussion A diverse group of SP educators from around the world identified the ASPE SOBP in general as relevant and applicable to their practice. The standards provided both guidance and flexibility for working with SPs in a safe, effective and quality-based way. At the same time there were challenges noted and recommendations made that can help to inform future iterations of the standards

    Effective density of aircraft engine PM revisited : effects of engine thrust, engine type, fuel, and sample conditioning

    Get PDF
    Aircraft gas turbine engines emit soot agglomerates with varying size, shape, and composition as a function of their operating condition. A useful parameter, which accounts for particle morphology, is effective density. Effective density is used to relate particle number and mass emissions in aviation PM emission models. However, measurement data of PM effective density from commercial aircraft turbine engines are very limited. Here, we report the size‐dependent effective density of PM sampled from commercial aircraft turbine engines in an engine test cell using a standardized sampling and measurement system. We used tandem DMA‐CPMA classification as in our previous study (Durdina et al. 2014). The novelty of this work is reduced scan time from over 10 minutes down to 1 minute per sample with the same hardware configuration, wider range of particle sizes, measurement of different engines, and a larger database with better data quality. The fast method allowed us to measure various engine types during their post‐overhaul test runs with short test points. We also performed effective density measurements during two dedicated test campaigns of the same engine. These campaigns investigated the effects of an alternative fuel blend on emissions and the evolution of the exhaust plume downstream of the engine exit plane. In the latter campaign, the effective density was measured with and without the treatment with a catalytic stripper approximately 25 m downstream of the engine exit plane. Figure 1 shows the compiled results obtained for all engines and fuels tested with exhaust samples taken at the engine exit plane and 25 m downstream with a catalytic stripper. The results confirm the thrust dependence of the effective density distributions reported previously. The most distinct differences are between the effective density distributions at idle thrust (Figure 1, a) and medium to high thrust (Figure 1, b). This trend was qualitatively the same for all engines tested. In contrast to our previous report, the effective densities at medium and high thrust did not follow the mass‐mobility relationship determined previously. The best fit of the data is an exponential function. The fit functions determined have potential applications in aircraft PM emissions modeling and measurement. The size‐dependent densities can be used to estimate PM mass concentration from particle size distributions measured using mobility particle sizers. The density functions can be used to improve particle loss correction models in sampling systems for aircraft engine emissions

    From Acne to Zoster - Opportunities of Moulage Techniques in Nursing Education

    Get PDF
    No matter how good a patient simulator’s acting skills, no one can present a rash on demand. Yet illnesses and conditions involving the skin are manifold, and integumentary findings often prompt further monitoring and investigation, apart from impacting upon the patient’s well-being simply for aesthetic reasons. In fact, beyond obvious points of contact e.g. during wound management, nursing staff are also predestined to discover skin conditions, due to the length of time spent with patients but also because of the closer proximity during acts of personal care. Hence developing practical skills around the detection and care of skin conditions is a relevant objective in medical and nursing education programs alike and contributes to patient safety.In this workshop, we want to introduce modern moulage techniques from makeup to three-dimensional transfer tattoos allowing for the presentation of skin conditions in simulation-based education, with visual and haptic fidelity, acting as visual cues in teaching or assessment in medical or nursing education. After a discussion of somewhat obvious scenarios in clinical skills teaching and assessment, the workshop will engage in a deliberation of more uncommon applications and offer participants a chance to experience moulage themselves

    Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells

    Get PDF
    Aircraft emissions contribute to local and global air pollution. Health effects of particulate matter (PM) from aircraft engines are largely unknown, since controlled cell exposures at relevant conditions are challenging. We examined the toxicity of non-volatile PM (nvPM) emissions from a CFM56-7B26 turbofan, the world's most used aircraft turbine using an unprecedented exposure setup. We combined direct turbine-exhaust sampling under realistic engine operating conditions and the Nano-Aerosol Chamber for In vitro Toxicity to deposit particles onto air-liquid-interface cultures of human bronchial epithelial cells (BEAS-2B) at physiological conditions. We evaluated acute cellular responses after 1-h exposures to diluted exhaust from conventional or alternative fuel combustion. We show that single, short-term exposures to nvPM impair bronchial epithelial cells, and PM from conventional fuel at ground-idle conditions is the most hazardous. Electron microscopy of soot reveals varying reactivity matching the observed cellular responses. Stronger responses at lower mass concentrations suggest that additional metrics are necessary to evaluate health risks of this increasingly important emission source

    Nonvolatile particulate matter emissions of a business jet measured at ground level and estimated for cruising altitudes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher.Business aviation is a relatively small but steadily growing and little investigated emission source. Regarding emissions, aircraft turbine engines rated at and below 26.7 kN thrust are certified only for visible smoke and are excluded from the nonvolatile particulate matter (nvPM) standard. Here, we report nvPM emission characteristics of a widely used small turbofan engine determined in a ground test of a Dassault Falcon 900EX business jet. These are the first reported nvPM emissions of a small in-production turbofan engine determined with a standardized measurement system used for emissions certification of large turbofan engines. The ground-level measurements together with a detailed engine performance model were used to predict emissions at cruising altitudes. The measured nvPM emission characteristics strongly depended on engine thrust. The geometric mean diameter increased from 17 nm at idle to 45 nm at take-off. The nvPM emission indices peaked at low thrust levels (7 and 40% take-off thrust in terms of nvPM number and mass, respectively). A comparison with a commercial airliner shows that a business jet may produce higher nvPM emissions from flight missions as well as from landing and take-off operations. This study will aid the development of emission inventories for small aircraft turbine engines and future emission standards

    Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila.

    Get PDF
    In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as hub metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait

    Correction for particle Loss in a regulatory aviation nvPM emissions system using measured particle size

    Get PDF
    To reduce the adverse impact of civil aviation on local air quality and human health, a new international standard for non-volatile Particulate Matter (nvPM) number and mass emissions was recently adopted. A system loss correction method, which accounts for the significant size-dependent particle loss, is also detailed to predict nvPM emissions representative of those at engine exit for emissions inventory purposes. As Particle-Size-Distribution (PSD) measurement is currently not prescribed, the existing loss correction method uses the nvPM number and mass measurements along with several assumptions to predict a PSD, resulting in significant uncertainty. Three new system loss correction methodologies using measured PSD were developed and compared with the existing regulatory method using certification-like nvPM data reported by the Swiss and European nvPM reference systems for thirty-two civil turbofan engines representative of the current fleet. Additionally, the PSD statistics of three sizing instruments typically used in these systems (SMPS, DMS500 and EEPS) were compared on a generic aero-engine combustor rig. General agreement between the three new PSD loss correction methods was observed, with both nvPM number- and mass-based system loss correction factors (kSL_num and kSL_mass) within ±10% reported across the engines tested. By comparison, the existing regulatory method was seen to underpredict kSL_num by up to 67% and overpredict kSL_mass by up to 49% when compared with the measured-PSD-based methods, typically driven by low nvPM mass concentrations and small particle size. In terms of the particle sizing instrument inter-comparison, an agreement of ±2 nm for the GMD and ±0.08 for the GSD was observed across a range of particle sizes on the combustor rig. However, it was seen that these differences can result in a 19% bias for kSL_num and 8% for kSL_mass for the measured-PSD-based methods, highlighting the need for further work towards the standardisation of PSD measurement for regulatory purposes

    Characterizing and predicting nvPM size distributions for aviation emission inventories and environmental impact

    Get PDF
    Concerns about civil aviation’s air quality and environmental impacts have led to recent regulations on nonvolatile particulate matter (nvPM) mass and number emissions. Although these regulations do not mandate measuring particle size distribution (PSD), understanding PSDs is vital for assessing the environmental impacts of aviation nvPM. This study introduces a comprehensive data set detailing PSD characteristics of 42 engines across 19 turbofan types, ranging from unregulated small business jets to regulated large commercial aircraft. Emission tests were independently performed by using the European and Swiss reference nvPM sampling and measurement systems with parallel PSD measurements. The geometric mean diameter (GMD) at the engine exit strongly correlated with the nvPM number-to-mass ratio (N/M) and thrust, varying from 7 to 52 nm. The engine-exit geometric standard deviation ranged from 1.7 to 2.5 (mean of 2.05). The study proposes empirical correlations to predict GMD from N/M data of emissions-certified engines. These predictions are expected to be effective for conventional rich-burn engines and might be extended to novel combustor technologies if additional data become available. The findings support the refinement of emission models and help in assessing the aviation non-CO2 climate and air quality impacts
    • 

    corecore