64 research outputs found

    Determinants of the Relationship between Cytokine Production in Pregnant Women and Their Infants

    Get PDF
    Exposure to environmental factors during fetal life and infancy is thought to play an important role in the early development of innate and adaptive immunity. The immunological relationship between mother and infant and the effect that environmental exposures have during pregnancy and early childhood have not been studied extensively. Here the production of cytokines was measured in 146 pairs of mothers and their 2- month-old infants. The effect of place of residence, socio-economic variables, parasitic infections as well as maternal and child characteristics on measured cytokine production was determined. Mothers producing high levels of IL-10, IFN-γ and IL-5 were more likely to have infants who also produced high levels of these cytokines either spontaneously (OR 2.6(95%CI 1.2–5.4), OR 2.9(CI 1.3–6.6), OR 11.2(CI 4.6–27.2), respectively) or in response to PHA (IL-10: OR 3.0(CI 1.4–6.6), IFN-γ: OR 2.0(CI 1.0–4.2), respectively) even after adjustment for potential confounding variables. This was not the case for TNF-α. In response to LPS, place of residence was a strong determinant of infant IL-10 (OR 0.2(CI 0.1–0.9)) and TNF-α (OR 0.3(CI 0.1–0.9)) production. Maternal protozoan infections was independently associated with reduced infant IL10 in response to PHA and to LPS as well as reduced TNF-α and IFN-γ in response to PHA. These results indicate strong relationship between maternal and infant's cellular immune responses even after taking into account many environmental influences that could affect infant's response directly or indirectly through uterine microenvironment. However, place of residence and intestinal infections may still directly affect the immune responses of the infant. Taken together, the study provides evidence for imprinted cytokine responses of an infant which may have implications for their reaction to incoming antigens, warranting further investigation into the role that genetics or epigenetics play in shaping the cytokine response by an infant to self or external antigens

    Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation

    Get PDF
    Bloodstream infections and graft-versus-host disease are common complications after hematopoietic stem cell transplantation (HSCT) procedures, associated with the gut microbiota that acts as a reservoir for opportunistic pathogens. Selective gut decontamination (SGD) and total gut decontamination (TGD) during HSCT have been associated with a decreased risk of developing these complications after transplantation. However, because studies have shown conflicting results, the use of these treatments remains subject of debate. In addition, their impact on the gut microbiota is not well studied. The aim of this study was to elucidate the dynamics of the microbiota during and after TGD and to compare these with the dynamics of SGD. In this prospective, observational, single center study fecal samples were longitudinally collected from 19 children eligible for allogenic HSCT (TGD, n=12; SGD, n=7), weekly during hospital admission and monthly after discharge. In addition, fecal samples were collected from 3 family stem cell donors. Fecal microbiota structure of patients and donors was determined by 16S rRNA gene amplicon sequencing. Microbiota richness and diversity markedly decreased during SGD and TGD and gradually increased after cessation of decontamination treatment. During SGD, gut microbiota composition was relatively stable and dominated by Bacteroides, whereas it showed high inter- and intraindividual variation and low Bacteroides abundance during TGD. In some children TGD allowed the genera Enterococcus and Streptococcus to thrive during treatment. A gut microbiota dominated by Bacteroides was associated with increased predicted activity of several metabolic processes. Comparing the microbiota of recipients and their donors indicated that receiving an SCT did not alter the patient's microbiota to become more similar to that of its donor. Overall, our findings indicate that SGD and TGD affect gut microbiota structure in a treatment-specific manner. Whether these treatments affect clinical outcomes via interference with the gut microbiota needs to be further elucidated. (C) 2019 American Society for Blood and Marrow Transplantation.Peer reviewe

    Differential Elimination of Anti-Thymocyte Globulin of Fresenius and Genzyme Impacts T-Cell Reconstitution After Hematopoietic Stem Cell Transplantation

    Get PDF
    Anti-thymocyte globulin (ATG) is a lymphocyte depleting agent applied in hematopoietic stem cell transplantation (HSCT) to prevent rejection and Graft-vs.-Host Disease (GvHD). In this study, we compared two rabbit ATG products, ATG-Genzyme (ATG-GENZ), and ATG-Fresenius (ATG-FRES), with respect to dosing, clearance of the active lymphocyte binding component, post-HSCT immune reconstitution and clinical outcome. Fifty-eigth pediatric acute leukemia patients (n = 42 ATG-GENZ, n = 16 ATG-FRES), who received a non-depleted bone marrow or peripheral blood stem cell graft from an unrelated donor were included. ATG-GENZ was given at a dosage of 6–10 mg/kg; ATG-FRES at 45–60 mg/kg. The active component of ATG from both products was cleared at different rates. Within the ATG-FRES dose range no differences were found in clearance of active ATG or T-cell re-appearance. However, the high dosage of ATG-GENZ (10 mg/kg), in contrast to the low dosage (6–8 mg/kg), correlated with prolonged persistence of active ATG and delayed T-cell reconstitution. Occurrence of serious acute GvHD (grade III–IV) was highest in the ATG-GENZ-low dosage group. These results imply that dosing of ATG-GENZ is more critical than dosing of ATG-FRES due to the difference in clearance of active ATG. This should be taken into account when designing clinical protocols

    Hematopoietic cell transplantation in severe combined immunodeficiency : The SCETIDE 2006-2014 European cohort

    Get PDF
    Publisher Copyright: © 2021 The AuthorsBackground: Hematopoietic stem cell transplantation (HSCT) represents a curative treatment for patients with severe combined immunodeficiency (SCID), a group of monogenic immune disorders with an otherwise fatal outcome. Objective: We performed a comprehensive multicenter analysis of genotype-specific HSCT outcome, including detailed analysis of immune reconstitution (IR) and the predictive value for clinical outcome. Methods: HSCT outcome was studied in 338 patients with genetically confirmed SCID who underwent transplantation in 2006-2014 and who were registered in the SCETIDE registry. In a representative subgroup of 152 patients, data on IR and long-term clinical outcome were analyzed. Results: Two-year OS was similar with matched family and unrelated donors and better than mismatched donor HSCT (P 0.5 × 10e3/μL at +1 year were identified as independent predictors of favorable clinical and immunologic outcome. Conclusion: Recent advances in HSCT in SCID patients have resulted in improved OS and EFS in all genotypes and donor types. To achieve a favorable long-term outcome, treatment strategies should aim for optimal naive CD4 T lymphocyte regeneration.Peer reviewe
    • …
    corecore