482 research outputs found

    Long-term organic carbon preservation enhanced by iron and manganese.

    Get PDF
    The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time

    Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives.

    Get PDF
    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral–fluid–microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use

    Behaviour and fate of vanadium during the aerobic neutralisation of hyperalkaline slag leachate

    Get PDF
    Vanadium is a toxic metal present in alkaline leachates produced during the weathering of steel slags. Slag leaching can therefore have deleterious effects on local watercourses due to metal toxicity, the effects of the high pH (9–12.5) and rapid carbonation (leading to smothering of benthic communities). We studied the fate and behaviour of V in slag leachate both through field observations of a heavily affected stream (Howden Burn, Consett UK) and in controlled laboratory experiments where slag leachates were neutralised by CO2 ingassing from air. V was found to be removed from leachates downstream from the Howden Burn source contemporaneously with a fall in pH, Ca, Al and Fe concentrations. In the neutralisation experiments pH reduced from 12 → 8, and limited quantities of V were incorporated into precipitated CaCO3. The presence of kaolinite clay (i.e. SiOH and AlOH surfaces) during neutralisation experiments had no measureable effect on V uptake in the alkaline to circumneutral pH range. XANES analysis showed that V was present in precipitates recovered from experiments as adsorbed or incorporated V(V) indicating its likely presence in leachates as the vanadate oxyanion (HVO42−). Nano-scale particles of 2-line ferrihydrite also formed in the neutralised leachates potentially providing an additional sorption surface for V uptake. Indeed, removal of V from leachates was significantly enhanced by the addition of goethite (i.e. FeOOH surfaces) to experiments. EXAFS analysis of recovered goethite samples showed HVO42− was adsorbed by the formation of strong inner-sphere complexes, facilitating V removal from solution at pH < 10. Results show that carbonate formation leads to V removal from leachates during leachate neutralisation, and the presence of both naturally occurring and neoformed Fe (oxy)hydroxides provide a potent sink for V in slag leachates, preventing the spread of V in the environment

    Evaluating a primary carbonate pathway for manganese enrichments in reducing environments

    Get PDF
    Most manganese (Mn) enrichments in the sedimentary rock record are hosted in carbonate minerals, which are assumed to have formed by diagenetic reduction of precursor Mn-oxides, and are considered diagnostic of strongly oxidizing conditions. Here we explore an alternative model where Mn-carbonates form in redox-stratified water columns linked to calcium carbonate dissolution. In ferruginous Brownie Lake in Minnesota, USA, we document Mn-carbonates as an HCl-extractable phase present in sediment traps and in reducing portions of the water column. Mn-carbonate becomes supersaturated in the Brownie Lake chemocline where dissolved oxygen concentrations fall below 5 μM, and Mn-oxide reduction increases the dissolved Mn concentration. Supersaturation is enhanced when calcite originating from surface waters dissolves in more acidic waters at the chemocline. In the same zone, sulfate reduction and microaerobic methane oxidation add dissolved inorganic carbon (DIC) with negative . These observations demonstrate that sedimentary Mn enrichments may 1) develop from primary carbonate phases, and 2) can occur in environments with dissolved oxygen concentrations 200 μM), and where Mn and Fe are partitioned by S cycling, photoferrotrophy, or microaerophilic Fe-oxidation. A shallow lysocline enhances Mn-carbonate production by providing additional DIC and nucleation sites for crystal growth. This carbonate model for Mn-enrichments is expected to be viable in both euxinic and ferruginous environments, and provides a more nuanced view of the relationships between Mn and carbon cycling, with applications throughout the rock record

    Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment

    Get PDF
    The coprecipitation of organic carbon with iron minerals is important for its preservation in soils and sediments, but the mechanisms for carbon-iron interactions and thus the controls on organic carbon cycling are far from understood. Here we coprecipitate carboxylic acids with iron (oxyhydr)oxide ferrihydrite and use near-edge X-ray absorption fine structure spectroscopy and wet chemical treatments to determine the relationship between sequestration mechanism and organic carbon stability against its release and chemical oxidative remineralisation. We show that organic carbon sequestration, stabilisation and persistence increase with an increasing number of carboxyl functional groups. We suggest that carboxyl-richness provides an important control on organic carbon preservation in the natural environment. Our work offers a mechanistic basis for understanding the stability and persistence of organic carbon in soils and sediments, which might be used to develop an overarching relationship between organic functional group-richness, mineral interactions and organic carbon preservation in the Earth system

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children

    Biomass Smoke Exposure Is Associated With Gastric Cancer and Probably Mediated Via Oxidative Stress and DNA Damage: A Case-Control Study.

    Get PDF
    PURPOSE: We investigated the association between gastric cancer and environmental and dietary exposures. In addition, we explored probable mechanistic pathways for the influence of biomass smoke on gastric carcinogenesis. PATIENTS AND METHODS: The study was conducted in Lusaka, Zambia. Questionnaires were used to collect data on risk factors, whereas enzyme-linked immunosorbent assays and high-performance liquid chromatography were used to measure biologic exposures. Study data were analyzed using contingency tables and logistic regression. RESULTS: We enrolled 72 patients with gastric adenocarcinoma and 244 controls. Gastric cancer was positively associated with rural residence (odds ratio [OR], 2.9; 95% CI, 1.5 to 5.3), poverty (OR, 4.2; 95% CI, 1.9 to 9.1), and daily consumption of processed meat (OR, 6.4; 95% CI, 1.3 to 32) and negatively associated with consumption of green vegetables (OR, 0.2; 95% CI, 0.1 to 0.5). Gastric cancer was also associated with biomass smoke exposure (OR, 3.5; 95% CI, 1.9 to 6.2; P < .0001), an association that was stronger for intestinal-type cancers (OR, 3.6; 95% CI, 1.5 to 9.1; P = .003). Exposure to biomass smoke in controls was associated with higher urinary levels of 8-isoprostane (P < .0001), 8-hydroxydeoxyguanosine (P = .029), and 1-hydroxypyrene (P = .041). Gastric cancer was not associated with biochemical measures of current exposure to aflatoxins or ochratoxins. CONCLUSION: In Zambia, exposure to biomass smoke, daily consumption of processed meat, and poverty are risk factors for gastric cancer, whereas daily consumption of green vegetables is protective against gastric cancer. Exposure to biomass smoke was associated with evidence of oxidative stress and DNA damage, suggesting mechanistic plausibility for the observed association, and the association was restricted to intestinal-type gastric cancer

    Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo

    Get PDF
    Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Δlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Δlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Δlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Δlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Δlgt mutant were associated with only slightly delayed growth in complete medium. However the Δlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Δlgt mutant from establishing invasive infection

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    The Intermediate Filament Network in Cultured Human Keratinocytes Is Remarkably Extensible and Resilient

    Get PDF
    The prevailing model of the mechanical function of intermediate filaments in cells assumes that these 10 nm diameter filaments make up networks that behave as entropic gels, with individual intermediate filaments never experiencing direct loading in tension. However, recent work has shown that single intermediate filaments and bundles are remarkably extensible and elastic in vitro, and therefore well-suited to bearing tensional loads. Here we tested the hypothesis that the intermediate filament network in keratinocytes is extensible and elastic as predicted by the available in vitro data. To do this, we monitored the morphology of fluorescently-tagged intermediate filament networks in cultured human keratinocytes as they were subjected to uniaxial cell strains as high as 133%. We found that keratinocytes not only survived these high strains, but their intermediate filament networks sustained only minor damage at cell strains as high as 100%. Electron microscopy of stretched cells suggests that intermediate filaments are straightened at high cell strains, and therefore likely to be loaded in tension. Furthermore, the buckling behavior of intermediate filament bundles in cells after stretching is consistent with the emerging view that intermediate filaments are far less stiff than the two other major cytoskeletal components F-actin and microtubules. These insights into the mechanical behavior of keratinocytes and the cytokeratin network provide important baseline information for current attempts to understand the biophysical basis of genetic diseases caused by mutations in intermediate filament genes
    corecore