26 research outputs found

    Quantum optomechanics beyond the quantum coherent oscillation regime

    Full text link
    Interaction with a thermal environment decoheres the quantum state of a mechanical oscillator. When the interaction is sufficiently strong, such that more than one thermal phonon is introduced within a period of oscillation, quantum coherent oscillations are prevented. This is generally thought to preclude a wide range of quantum protocols. Here, we introduce a pulsed optomechanical protocol that allows ground state cooling, general linear quantum non-demolition measurements, optomechanical state swaps, and quantum state preparation and tomography without requiring quantum coherent oscillations. Finally we show how the protocol can break the usual thermal limit for sensing of impulse forces.Comment: 6 pages, 3 figure

    Evanescent field optical readout of graphene mechanical motion at room temperature

    Get PDF
    Graphene mechanical resonators have recently attracted considerable attention for use in precision force and mass sensing applications. To date, readout of their oscillatory motion has typically required cryogenic conditions to achieve high sensitivity, restricting their range of applications. Here we report the first demonstration of evanescent optical readout of graphene motion, using a scheme which does not require cryogenic conditions and exhibits enhanced sensitivity and bandwidth at room temperature. We utilise a high QQ microsphere to enable evanescent readout of a 70 μ\mum diameter graphene drum resonator with a signal-to-noise ratio of greater than 25 dB, corresponding to a transduction sensitivity of SN1/2=S_{N}^{1/2} = 2.6 ×1013\times 10^{-13} m Hz1/2\mathrm{Hz}^{-1/2}. The sensitivity of force measurements using this resonator is limited by the thermal noise driving the resonator, corresponding to a force sensitivity of Fmin=1.5×1016F_{min} = 1.5 \times 10^{-16} N Hz1/2{\mathrm{Hz}}^{-1/2} with a bandwidth of 35 kHz at room temperature (T = 300 K). Measurements on a 30 μ\mum graphene drum had sufficient sensitivity to resolve the lowest three thermally driven mechanical resonances.Comment: Fixed formatting errors in bibliograph

    Mechanical squeezing via fast continuous measurement

    Full text link
    We revisit quantum state preparation of an oscillator by continuous linear position measurement. Quite general analytical expressions are derived for the conditioned state of the oscillator. Remarkably, we predict that quantum squeezing is possible outside of both the backaction dominated and quantum coherent oscillation regimes, relaxing experimental requirements even compared to ground-state cooling. This provides a new way to generate non-classical states of macroscopic mechanical oscillators, and opens the door to quantum sensing and tests of quantum macroscopicity at room temperature

    Lancet

    Get PDF
    BACKGROUND: In 2015, the second cycle of the CONCORD programme established global surveillance of cancer survival as a metric of the effectiveness of health systems and to inform global policy on cancer control. CONCORD-3 updates the worldwide surveillance of cancer survival to 2014. METHODS: CONCORD-3 includes individual records for 37.5 million patients diagnosed with cancer during the 15-year period 2000-14. Data were provided by 322 population-based cancer registries in 71 countries and territories, 47 of which provided data with 100% population coverage. The study includes 18 cancers or groups of cancers: oesophagus, stomach, colon, rectum, liver, pancreas, lung, breast (women), cervix, ovary, prostate, and melanoma of the skin in adults, and brain tumours, leukaemias, and lymphomas in both adults and children. Standardised quality control procedures were applied; errors were rectified by the registry concerned. We estimated 5-year net survival. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: For most cancers, 5-year net survival remains among the highest in the world in the USA and Canada, in Australia and New Zealand, and in Finland, Iceland, Norway, and Sweden. For many cancers, Denmark is closing the survival gap with the other Nordic countries. Survival trends are generally increasing, even for some of the more lethal cancers: in some countries, survival has increased by up to 5% for cancers of the liver, pancreas, and lung. For women diagnosed during 2010-14, 5-year survival for breast cancer is now 89.5% in Australia and 90.2% in the USA, but international differences remain very wide, with levels as low as 66.1% in India. For gastrointestinal cancers, the highest levels of 5-year survival are seen in southeast Asia: in South Korea for cancers of the stomach (68.9%), colon (71.8%), and rectum (71.1%); in Japan for oesophageal cancer (36.0%); and in Taiwan for liver cancer (27.9%). By contrast, in the same world region, survival is generally lower than elsewhere for melanoma of the skin (59.9% in South Korea, 52.1% in Taiwan, and 49.6% in China), and for both lymphoid malignancies (52.5%, 50.5%, and 38.3%) and myeloid malignancies (45.9%, 33.4%, and 24.8%). For children diagnosed during 2010-14, 5-year survival for acute lymphoblastic leukaemia ranged from 49.8% in Ecuador to 95.2% in Finland. 5-year survival from brain tumours in children is higher than for adults but the global range is very wide (from 28.9% in Brazil to nearly 80% in Sweden and Denmark). INTERPRETATION: The CONCORD programme enables timely comparisons of the overall effectiveness of health systems in providing care for 18 cancers that collectively represent 75% of all cancers diagnosed worldwide every year. It contributes to the evidence base for global policy on cancer control. Since 2017, the Organisation for Economic Co-operation and Development has used findings from the CONCORD programme as the official benchmark of cancer survival, among their indicators of the quality of health care in 48 countries worldwide. Governments must recognise population-based cancer registries as key policy tools that can be used to evaluate both the impact of cancer prevention strategies and the effectiveness of health systems for all patients diagnosed with cancer. FUNDING: American Cancer Society; Centers for Disease Control and Prevention; Swiss Re; Swiss Cancer Research foundation; Swiss Cancer League; Institut National du Cancer; La Ligue Contre le Cancer; Rossy Family Foundation; US National Cancer Institute; and the Susan G Komen Foundation

    Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial.

    Get PDF
    Based on previous findings, we hypothesised that radiotherapy to the prostate would improve overall survival in men with metastatic prostate cancer, and that the benefit would be greatest in patients with a low metastatic burden. We aimed to compare standard of care for metastatic prostate cancer, with and without radiotherapy.This article is freely available via Open Access

    Nanoparticle detection and characterization using optical microresonators

    No full text
    We discuss methods to characterize single nanoparticles simultaneously by polarisability, refractive index and mass using toroidal microresonators. A new technique to determine the refractive index via mode-splitting allows us to size the nanoparticles

    Ultrasensitive optomechanical magnetometry

    No full text
    A cavity optomechanical magnetometeroperating in the 100 pT range is reported. The device operates at earth field, achieves tens of megahertz bandwidth with 60 mu m spatial resolution and microwatt optical-power requirements. These unique capabilities may have a broad range of applications including cryogen-free and microfluidic magnetic resonance imaging (MRI), and investigation of spin-physics in condensed matter systems

    Dynamics of photoinduced refractive index changes in As2S3 fibers

    No full text
    We investigate the dynamics of photoinduced index changes in chalcogenide As2S3 fibers. Using a novel phase sensitive technique for measuring the photoinduced index change, we find that the index evolution is a two-stage process: it consists of a fast reduction and a subsequent slow increase in the refractive index. We show that the index change depends strongly on the beam intensity with both positive and negative changes possible. These findings can have application in design and fabrication of photoinduced devices such as Bragg gratings and photonic cavities
    corecore