926 research outputs found

    Josephson squelch filter for quantum nanocircuits

    Full text link
    We fabricated and tested a squelch circuit consisting of a copper powder filter with an embedded Josephson junction connected to ground. For small signals (squelch-ON), the small junction inductance attenuates strongly from DC to at least 1 GHz, while for higher frequencies dissipation in the copper powder increases the attenuation exponentially with frequency. For large signals (squelch-OFF) the circuit behaves as a regular metal powder filter. The measured ON/OFF ratio is larger than 50dB up to 50 MHz. This squelch can be applied in low temperature measurement and control circuitry for quantum nanostructures such as superconducting qubits and quantum dots.Comment: Corrected and completed references 6,7,8. Updated some minor details in figure

    Relations of Parenting Quality, Interparental Conflict, and Overnights with Mental Health Problems of Children in Divorcing Families with High Legal Conflict

    Get PDF
    The current study examined the associations between child mental health problems and the quality of maternal and paternal parenting, and how these associations were moderated by three contextual factors, quality of parenting by the other parent, interparental conflict, and the number of overnights parents had with the child. Data for the current study come from a sample of divorcing families who are in high legal conflict over developing or maintaining a parenting plan following divorce. Analyses revealed that the associations between child mental health problems and positive maternal and paternal parenting were moderated by the quality of parenting provided by the other parent and by the number of overnights children spent with parents, but not by the level of interparental conflict. When both parenting by the other parent and number of overnights were considered in the same model, only number of overnights moderated the relations between parenting and child behavior problems. The results support the proposition that the well-being of children in high conflict divorcing families is better when they spend adequate time with at least one parent who provides high quality parenting

    Domain-general cognitive motivation: Evidence from economic decision-making - Final registered report

    Get PDF
    Stable individual differences in cognitive motivation (i.e., the tendency to engage in and enjoy effortful cognitive activities) have been documented with self-report measures, yet convergent support for a trait-level construct is still lacking. In the present study, we used an innovative decision-making paradigm (COG-ED) to quantify the costs of cognitive effort, a metric of cognitive motivation, across two distinct cognitive domains: working memory (an N-back task) and speech comprehension (understanding spoken sentences in background noise). We hypothesized that cognitive motivation operates similarly within individuals, regardless of domain. Specifically, in 104 adults aged 18-40 years, we tested whether individual differences in effort costs are stable across domains, even after controlling for other potential sources of shared individual variation. Conversely, we evaluated whether the costs of cognitive effort across domains may be better explained in terms of other relevant cognitive and personality-related constructs, such as working memory capacity or reward sensitivity. We confirmed a reliable association among effort costs in both domains, even when these other sources of individual variation, as well as task load, are statistically controlled. Taken together, these results add support for trait-level variation in cognitive motivation impacting effort-based decision making across multiple domains

    Mind over memory: cueing the aging brain

    Get PDF
    A decline in recollection is a hallmark of even healthy aging and is associated with wider impairments in mental control. Older adults have difficulty internally directing thought and action in line with their goals, and often rely more on external cues. To assess the impact this has on memory, emerging brain-imaging and behavioral approaches investigate the operation and effectiveness of goal-directed control before information is retrieved. Current data point to effects of aging at more than one stage in this process, particularly in the face of competing goals. These effects may reflect wider changes in the proactive, self-initiated regulation of thought and action. Understanding them is essential for establishing whether internal “self-cuing” of memory can be improved, and whether—and when—it is best to use environmental support from external cues to maximize memory performance

    Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex

    Get PDF
    Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances

    The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses

    Get PDF
    The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms

    Neural Mechanisms of Interference Control in Working Memory: Effects of Interference Expectancy and Fluid Intelligence

    Get PDF
    A critical aspect of executive control is the ability to limit the adverse effects of interference. Previous studies have shown activation of left ventrolateral prefrontal cortex after the onset of interference, suggesting that interference may be resolved in a reactive manner. However, we suggest that interference control may also operate in a proactive manner to prevent effects of interference. The current study investigated the temporal dynamics of interference control by varying two factors - interference expectancy and fluid intelligence (gF) - that could influence whether interference control operates proactively versus reactively.A modified version of the recent negatives task was utilized. Interference expectancy was manipulated across task blocks by changing the proportion of recent negative (interference) trials versus recent positive (facilitation) trials. Furthermore, we explored whether gF affected the tendency to utilize specific interference control mechanisms. When interference expectancy was low, activity in lateral prefrontal cortex replicated prior results showing a reactive control pattern (i.e., interference-sensitivity during probe period). In contrast, when interference expectancy was high, bilateral prefrontal cortex activation was more indicative of proactive control mechanisms (interference-related effects prior to the probe period). Additional results suggested that the proactive control pattern was more evident in high gF individuals, whereas the reactive control pattern was more evident in low gF individuals.The results suggest the presence of two neural mechanisms of interference control, with the differential expression of these mechanisms modulated by both experimental (e.g., expectancy effects) and individual difference (e.g., gF) factors

    Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    Get PDF
    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality.Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC.These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference
    corecore