33 research outputs found

    Transgenic Mouse with the Herpes Simplex Virus Type 1 Latency-Associated Gene: Expression and Function of the Transgene

    No full text
    During herpes simplex virus type 1 (HSV-1) latent infection in human peripheral sensory ganglia, the major viral gene transcribed is the latency-associated transcript (LAT) gene. In order to facilitate the study of this gene, we generated a transgenic mouse that contains the DNA fragment that transcribes the LAT RNAs (2.0 kb and its 1.5-kb spliced transcript) under control of the cytomegalovirus promoter. The tissue distribution of these transcripts and their effects upon HSV-1 replication, latency, and reactivation in the transgenic-mouse model were examined. Different steady-state amounts of both transcripts were found in various tissues. While the highest levels of the 2.0-kb RNA were detected in heart and skeletal muscle, the 1.5-kb transcript was found at elevated levels in the brain and at much higher levels in the trigeminal ganglia (TG). Replication of both the wild-type and a LAT-negative mutant virus was suppressed in primary embryonic fibroblasts obtained from LAT-expressing transgenic mice compared to that in cells obtained from normal mice. HSV-1 DNA amounts in latently infected TG of transgenic mice were similar to those in normal mice. Reactivation of latent HSV-1 LAT-negative mutants by explant cocultivation of TG from transgenic mice was more efficient than reactivation from normal-mouse TG. Considering our present and previous results, we propose that the significantly higher steady-state level of the 1.5-kb RNA in the TG may link this transcript to latency functions and that by inhibition of virus replication, the LAT gene may protect ganglion cells and thereby increase the probability of reactivation

    Lack of gut microbiome recovery with spinal cord injury rehabilitation

    No full text
    ABSTRACTSpinal cord injury (SCI) is a devastating event that significantly changes daily function and quality of life and is linked to bowel and bladder dysfunction and frequent antibiotic treatment. We aimed to study the composition of the gut microbiome in individuals with SCI during the initial sub-acute rehabilitation process and during the chronic phase of the injury. This study included 100 fecal samples from 63 participants (Median age 40 years, 94% males): 13 cases with SCI in the sub-acute phase with 50 longitudinal samples, 18 cases with chronic SCI, and 32 age and gender-matched controls. We show, using complementary methods, that the time from the injury was a dominant factor linked with gut microbiome composition. Surprisingly, we demonstrated a lack of gut microbial recovery during rehabilitation during the sub-acute phase, with further deviation from the non-SCI control group in the chronic ambulatory SCI group. To generalize the results, we were able to show significant similarity of the signal when comparing to a previous cohort with SCI, to subjects from the American Gut Project who reported low physical activity, and to subjects from another population-based cohort who reported less normal stool consistency. Restoration of the microbiome composition may be another desirable measure for SCI recovery in the future, but further research is needed to test whether such restoration is associated with improved neurological outcomes and quality of life

    Inherited adaptation of genome-rewired cells in response to a challenging environment

    No full text
    Despite their evolutionary significance, little is known about the adaptation dynamics of genomically rewired cells in evolution. We have confronted yeast cells carrying a rewired regulatory circuit with a severe and unforeseen challenge. The essential HIS3 gene from the histidine biosynthesis pathway was placed under the exclusive regulation of the galactose utilization system. Glucose containing medium strongly represses the GAL genes including HIS3 and these rewired cells are required to operate this essential gene. We show here that although there were no adapted cells prior to the encounter with glucose, a large fraction of cells adapted to grow in this medium and this adaptation was stably inherited. The adaptation relied on individual cells that switched into an adapted state and, thus, the adaptation was due to a response of many individual cells to the change in environment and not due to selection of rare advantageous phenotypes. The adaptation of numerous individual cells by heritable phenotypic switching in response to a challenge extends the common evolutionary framework and attests to the adaptive potential of regulatory circuits
    corecore