389 research outputs found

    The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.</p> <p>Methods</p> <p>Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide) expression after infection with bacterial supernatants of <it>Streptococcus pneumoniae </it>(SP) and <it>Neisseria meningitides </it>(NM). Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2) phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia) and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene) expression and signal transduction were determined.</p> <p>Results</p> <p>We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA) verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1ÎČ expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between NM- or SP-induced signal transduction.</p> <p>Conclusions</p> <p>We propose that NM and SP induce glial cell activation and rCRAMP expression also via FPRL1 and MARCO. Thus the receptors contribute an important part to the host defence against infection.</p

    Concepts and clinical aspects of active implants for the treatment of bone fractures

    Get PDF
    Nonunion is a complication of long bone fractures that leads to disability, morbidity and high costs. Early detection is difficult and treatment through external stimulation and revision surgery is often a lengthy process. Therefore, alternative diagnostic and therapeutic options are currently being explored, including the use of external and internal sensors. Apart from monitoring fracture stiffness and displacement directly at the fracture site, it would be desirable if an implant could also vary its stiffness and apply an intervention to promote healing, if needed. This could be achieved either by a predetermined protocol, by remote control, or even by processing data and triggering the intervention itself (self-regulated ‘intelligent’ or ‘smart’ implant). So-called active or smart materials like shape memory alloys (SMA) have opened up opportunities to build active implants. For example, implants could stimulate fracture healing by active shortening and lengthening via SMA actuator wires; by emitting pulses, waves, or electromagnetic fields. However, it remains undefined which modes of application, forces, frequencies, force directions, time durations and periods, or other stimuli such implants should ideally deliver for the best result. The present paper reviews the literature on active implants and interventions for nonunion, discusses possible mechanisms of active implants and points out where further research and development are needed to build an active implant that applies the most ideal intervention

    Pantoprazole impairs fracture healing in aged mice

    Get PDF
    Proton pump inhibitors (PPIs) belong to the most common medication in geriatric medicine. They are known to reduce osteoclast activity and to delay fracture healing in young adult mice. Because differentiation and proliferation in fracture healing as well as pharmacologic actions of drugs markedly differ in the elderly compared to the young, we herein studied the effect of the PPI pantoprazole on bone healing in aged mice using a murine fracture model. Bone healing was analyzed by biomechanical, histomorphometric, radiological and protein biochemical analyses. The biomechanical analysis revealed a significantly reduced bending stiffness in pantoprazole-treated animals when compared to controls. This was associated with a decreased amount of bone tissue within the callus, a reduced trabecular thickness and a higher amount of fibrous tissue. Furthermore, the number of osteoclasts in pantoprazole-treated animals was significantly increased at 2 weeks and decreased at 5 weeks after fracture, indicating an acceleration of bone turnover. Western blot analysis showed a lower expression of the bone morphogenetic protein-4 (BMP-4), whereas the expression of the pro-angiogenic parameters was higher when compared to controls. Thus, pantoprazole impairs fracture healing in aged mice by affecting angiogenic and osteogenic growth factor expression, osteoclast activity and bone formation

    Profiling microRNA expression in murine bone healing and non-union formation: Role of miR-140 during the early stage of bone healing

    Get PDF
    Although cellular and molecular mechanisms during the course of bone healing have been thoroughly investigated, the regulation of gene expression by microRNA during bone regen eration is still poorly understood. We hypothesized that nonunion formation is associated with different microRNA expression patterns and that target proteins of these microRNAs are differently expressed in callus tissue of nonunions compared to physiologically healing bones. In a well-established femoral osteotomy model in CD-1 mice osteotomies were induced which result either in healing or in nonunion formation. MicroRNA and target protein expression was evaluated by microarray, quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot. Microarray analyses demonstrated 44 microRNAs to be rele vant for nonunion formation compared to physiological bone healing. In nonunions qrt-PCR could validate a higher expression of microRNA-140-3p and microRNA-140-5p. This was associated with a reduced expression of Dnpep and stromal cell-derived factor (SDF)-1α, which are both known to be target proteins of microRNA-140 and also to be involved in the process of bone healing. These data suggest that an increased expression of microRNA 140-3p and microRNA-140-5p markedly contributes to the development of nonunions, most probably by affecting bone morphogenetic protein (BMP)-2 function during the early stage of healing due to a reduced SDF-1α expression

    Diclofenac, a NSAID, delays fracture healing in aged mice

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs), such as diclofenac, belong to the most prescribed analgesic medication after traumatic injuries. However, there is accumulating evidence that NSAIDs impair fracture healing. Because bone regeneration in aged patients is subject to significant changes in cell differentiation and proliferation as well as a markedly altered pharmacological action of drugs, we herein analyzed the effects of diclofenac on bone healing in aged mice using a stable closed femoral facture model. Thirty-three mice (male n = 14, female n = 19) received a daily intraperitoneal injection of diclofenac (5 mg/kg body weight). Vehicletreated mice (n = 29; male n = 13, female n = 16) served as controls. Fractured mice femora were analyzed by means of X-ray, biomechanics, micro computed tomography (ÎŒCT), histology and Western blotting. Biomechanical analyses revealed a significantly reduced bending stiffness in diclofenac-treated animals at 5 weeks after fracture when compared to vehicle-treated controls. Moreover, the callus tissue in diclofenac-treated aged animals exhibited a significantly reduced amount of bone tissue and higher amounts of fibrous tissue. Further histological analyses demonstrated less lamellar bone after diclofenac treatment, indicating a delay in callus remodeling. This was associated with a decreased number of osteoclasts and an increased expression of osteoprotegerin (OPG) during the early phase of fracture healing. These findings indicate that diclofenac delays fracture healing in aged mice by affecting osteogenic growth factor expression and bone formation as well as osteoclast activity and callus remodeling

    Dark-field X-ray imaging for the assessment of osteoporosis in human lumbar spine specimens

    Get PDF
    Background: Dark-field imaging is a novel imaging modality that allows for the assessment of material interfaces by exploiting the wave character of x-ray. While it has been extensively studied in chest imaging, only little is known about the modality for imaging other tissues. Therefore, the purpose of this study was to evaluate whether a clinical X-ray dark-field scanner prototype allows for the assessment of osteoporosis.Materials and methods: In this prospective study we examined human cadaveric lumbar spine specimens (vertebral segments L2 to L4). We used a clinical prototype for dark-field radiography that yields both attenuation and dark-field images. All specimens were scanned in lateral orientation in vertical and horizontal position. All specimens were additionally imaged with CT as reference. Bone mineral density (BMD) values were derived from asynchronously calibrated quantitative CT measurements. Correlations between attenuation signal, dark-field signal and BMD were assessed using Spearman’s rank correlation coefficients. The capability of the dark-field signal for the detection of osteoporosis/osteopenia was evaluated with receiver operating characteristics (ROC) curve analysis.Results: A total of 58 vertebrae from 20 human cadaveric spine specimens (mean age, 73 years ±13 [standard deviation]; 11 women) were studied. The dark-field signal was positively correlated with the BMD, both in vertical (r = 0.56, p &lt; .001) and horizontal position (r = 0.43, p &lt; .001). Also, the dark-field signal ratio was positively correlated with BMD (r = 0.30, p = .02). No correlation was found between the signal ratio of attenuation signal and BMD (r = 0.14, p = .29). For the differentiation between specimens with and without osteoporosis/osteopenia, the area under the ROC curve (AUC) was 0.80 for the dark-field signal in vertical position.Conclusion: Dark-field imaging allows for the differentiation between spine specimens with and without osteoporosis/osteopenia and may therefore be a potential biomarker for bone stability

    Genomic footprints of activated telomere maintenance mechanisms in cancer.

    Get PDF
    Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXXtrunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXXtrunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer

    Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01

    Get PDF
    Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. Methods: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). Findings: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. Interpretation: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. Funding: Funded by Roche Sequencing Solutions, Inc

    Spondylarthropathies (including psoriatic arthritis): 244. Validity of Colour Doppler and Spectral Doppler Ultrasound of Sacroilicac Joints Againts Physical Examination as Gold Standard

    Get PDF
    Background: Sacroiliac joints (SJ) involvement is a distinctive and charasteristic feature of Spondyloarthritis (SpA) and x-ray is the test routinely used to make a diagnosis. However, x-ray reveals late structural damage but cannot detect active inflammation. The objective of this study was to assess the validity of Doppler ultrasound in SJ. Methods: Prospective blinded and controlled study of SJ, in which three populations were compared. We studied 106 consecutive cases, who were divided into three groups: a) 53 patients diagnosed with SpA who had inflammatory lumbar and gluteal pain assessed by a rheumatologist; b) 26 patients diagnosed with SpA who didn't have SJ tenderness and had normal physical examination; c) control group of 27 subjects (healthy subjetcs or with mechanical lumbar pain). All patients included that were diagnosed with SpA met almost the European Spondyloarthropathy Study Group (ESSG) classification criteria. Physical examination of the SJ included: sacral sulcus tenderness, iliac gapping, iliac compression, midline sacral thrust test, Gaenslen's test, and Patrick s test were used as gold standard. Both SJ were examined with Doppler ultrasound (General Electric Logiq 9, Wauwatosa WI, USA) fitted with a 9-14 Mhz lineal probe. The ultrasonographer was blinded to clinical data. Doppler in SJ was assessed as positive when both Doppler colour and resistance index (RI) < 0.75 within the SJ area were present. Statistical analysis was performed estimating sensitivity and specificity against gold standard. The Kappa correlation coefficient was used for reliability study. Results: 106 cases (53 female, 55 male; mean age 36 10 years) were studied. There were no statistical differences between groups related to age or sex. Physical examination of SJ was positive in 38 patients (59 sacroiliac joints). US detected Doppler signal within SJ in 37 patients (58 SJ): 33 of them were symptomatic SpA (52 SJ), one of them were asymptomatic SpA (1 SJ) and one was a healthy control (1 SJ). The accuracy of US when compared to clinical data as gold standard at subject level in the overall group was: sensitivity of 68.6% and specificity of 85.7%, positive predictive value of 70.5% and negative predictive value of 84.5%. A positive likelihood ratio of 4.8, a negative likelihood ratio of 0.36 and a kappa coefficient of 0.55 were achieved. Conclusions: Doppler US of SJ seems to be a valid method to detect active SJ inflammation. Disclosure statement: The authors have declared no conflicts of interes

    Guidelines and Recommendations on Yeast Cell Death Nomenclature

    Get PDF
    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research
    • 

    corecore