596 research outputs found

    Which spatial discretization for which distributed hydrological model?

    No full text
    International audienceDistributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial scale for the modelling units is a crucial issue. It is obviously linked to the available data and their scale, but not only. For a given catchment and a given data set, the "optimal" spatial discretization should be different according to the problem to be solved and the objectives of the modelling. Thus a flexible methodology is needed, especially for large catchments, to derive modelling units by performing suitable trade-off between available data, the dominant hydrological processes, their representation scale and the modelling objectives. In order to represent catchment heterogeneity efficiently according to the modelling goals, and the availability of the input data, we propose to use nested discretization, starting from a hierarchy of sub-catchments, linked by the river network topology. If consistent with the modelling objectives, the active hydrological processes and data availability, sub-catchment variability can be described using a finer nested discretization. The latter takes into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For small catchments, the landscape features such as agricultural fields, buildings, hedges, river reaches can be represented explicitly, as well as the water pathways between them. For larger catchments, such a representation is not feasible and simplification is necessary. For the sub-catchments discretization in these large catchments, we propose a flexible methodology based on the principles of landscape classification, using reference zones. These principles are independent from the catchment size. They allow to keep suitable features which are required in the catchment description in order to fulfil a specific modelling objective. The method leads to unstructured and homogeneous areas within the sub-catchments, which can be used as modelling units. It avoids map smoothing by suppressing the smallest units, the role of which can be very important in hydrology, and provides a confidence map (the distance map) for the classification. The confidence map can be used for further uncertainty analysis of modelling results. The final discretization remains consistent with the scale of input data and that of the source maps. We present an illustration of the method using available data from the upper Saône catchment (11 700 km2) in France. We compare the results with more traditional mapping approach, according to the landscape representation and input data scale

    Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments

    No full text
    International audienceDistributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial discretization is a crucial issue. It is obviously linked to the available data, their spatial resolution and the dominant hydrological processes. For a given catchment and a given data set, the "optimal" spatial discretization should be adapted to the modelling objectives, as the latter determine the dominant hydrological processes considered in the modelling. For small catchments, landscape heterogeneity can be represented explicitly, whereas for large catchments such fine representation is not feasible and simplification is needed. The question is thus: is it possible to design a flexible methodology to represent landscape heterogeneity efficiently, according to the problem to be solved? This methodology should allow a controlled and objective trade-off between available data, the scale of the dominant water cycle components and the modelling objectives. In this paper, we propose a general methodology for such catchment discretization. It is based on the use of nested discretizations. The first level of discretization is composed of the sub-catchments, organised by the river network topology. The sub-catchment variability can be described using a second level of discretizations, which is called hydro-landscape units. This level of discretization is only performed if it is consistent with the modelling objectives, the active hydrological processes and data availability. The hydro-landscapes take into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For numerical reasons these hydro-landscapes can be further subdivided into smaller elements that will constitute the modelling units (third level of discretization). The first part of the paper presents a review about catchment discretization in hydrological models from which we derived the principles of our general methodology. The second part of the paper focuses on the derivation of hydro-landscape units for medium to large scale catchments. For this sub-catchment discretization, we propose the use of principles borrowed from landscape classification. These principles are independent of the catchment size. They allow retaining suitable features required in the catchment description in order to fulfil a specific modelling objective. The method leads to unstructured and homogeneous areas within the sub-catchments, which can be used to derive modelling meshes. It avoids map smoothing by suppressing the smallest units, the role of which can be very important in hydrology, and provides a confidence map (the distance map) for the classification. The confidence map can be used for further uncertainty analysis of modelling results. The final discretization remains consistent with the resolution of input data and that of the source maps. The last part of the paper illustrates the method using available data for the upper Saône catchment in France. The interest of the method for an efficient representation of landscape heterogeneity is illustrated by a comparison with more traditional mapping approaches. Examples of possible models, which can be built on this spatial discretization, are finally given as perspectives for the work

    Water balance simulation of a dryland soil during fallow under conventional and conservation tillage in semiarid Aragon, Northeast Spain

    Get PDF
    The definitive version is available at: http://www.sciencedirect.com/science/journal/01671987In Central Aragon, winter cereal is sown in the autumn (November–December), commonly after a 16–18 months fallow period aimed at conserving soil water. This paper uses the Simple Soil–Plant–Atmosphere Transfer (SiSPAT) model, in conjunction with field data, to study the effect of long fallowing on the soil water balance under three tillage management systems (conventional tillage, CT; reduced tillage, RT; and no-tillage, NT). This was on the assumption that soil properties would remain unchanged during the entire fallow season. Once the model was validated with data obtained before primary tillage implementation, the differences between simulated and observed soil water losses for the CT and RT treatments could be interpreted as the direct effect of the soil tillage system. The model was calibrated and validated in a long-term tillage experiment using data from three contrasting long-fallow seasons over the period 1999–2002, where special attention was paid to predicting soil hydraulic properties in the pre-tillage conditions. The capacity of the model to simulate the soil water balance and its components over long fallowing was demonstrated. Both the fallow rainfall pattern and the tillage management system affected the soil water budget and components predicted by the model. The model predicted that about 81% of fallow seasonal rainfall is lost by evaporation in long-fallow periods with both a dry autumn in the first year of fallow and a rainfall above normal in spring. Whereas, when the fallow season is characterised by a wet autumn during the first year of fallow the model predicted a decrease in soil water evaporation and an increase in water storage and deep drainage components. In this case, the predicted water lost by evaporation was higher under NT (64%) than under RT (56%) and CT (44%). The comparison between measured and simulated soil water loss showed that the practice of tillage decreased soil water conservation in the short term. The long-term analysis of the soil water balance showed that, in fallow periods with a wet autumn during the first year of fallow, the soil water loss measured under CT and RT was moderately greater than that predicted by the model.This research was supported by the Comisión Interministerial de Ciencia y Tecnología of Spain (grants AGF98-0261-CO2-02 and AGL2001-2238-CO2-01 and PNFPI pre-doctoral fellowship awarded to the first author) and the European Union (FEDER funds).Peer reviewe

    Impact de l'urbanisation sur le cycle hydrologique dans un bassin versant periurbain. Application au bassin de l’Yzeron - ouest lyonnais, France

    Get PDF
    [Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAUInternational audienceL’urbanisation croissante, en particulier dans les zones périphériques aux grandes villes (zones périurbaines) a des conséquences sur le cycle hydrologique en modifiant l’infiltrabilité des sols, la recharge des nappes, ainsi que les chemins naturels de l’eau via les différents réseaux (routiers, eau potable, assainissement). Une modélisation à l'aide du modèle hydrologique distribué J2000 est mise en ½uvre sur le bassin versant de l’Yzeron, en périphérie de Lyon, représentatif des bassins périurbains français. Nous montrons en particulier que l’urbanisation modifie les composantes des écoulements en accroissant le ruissellement de surface au détriment des écoulements de base ou de sub-surface (comparaison de simulations s’appuyant sur des cartes d’occupation du sol de 1990, 1999, 2008). La prise en compte des réseaux d’assainissement et des déversoirs d’orage dans la modélisation permettra d’améliorer la simulation des bilans hydrologiques dans le bassin. / Urban growth, in particular close to big cities impacts the hydrological cycle by modifying soil infiltration capacity, groundwater recharge, but also by modifying natural water pathways due to the various networks associated with urbanization (roads, drinkable and sewer networks). The distributed hydrological model J2000 is set up in the Yzeron catchment, close to Lyon city. We show that urban growth modifies the flow components by increasing surface runoff and decreasing base and sub-surface flows (comparison of simulations based on past land use mapping of 1990, 1999, 2008). The inclusion of sewer networks and sewer overflow devices in the model will improve the water balance simulations of the catchment

    Quels liens entre climatologie, occupation des sols et inondations dans le bassin versant de l'Yzeron (ouest Lyonnais) ? Apport de l'analyse conjointe de données hydroclimatiques et d'images satellitaires très haute résolution

    Get PDF
    Le bassin versant de l'Yzeron, situé en périphérie immédiate de la ville de Lyon, est un bassin représentatif des bassins versants périurbains français. Il connaît, depuis les années 1970, une augmentation importante de son urbanisation. Ces dernières années, des crues importantes, entraînant des inondations à l'aval du bassin versant ont marqué les esprits, posant la question de l'impact des modifications de l'occupation des sols dans le bassin versant sur le régime des crues. Dans cet article, nous utilisons l'analyse combinée de données hydroclimatiques (pluie, température, évapotranspiration de référence -ET0, débits) et de cartes de l'occupation des sols dérivées d'images satellites SPOT à haute et très haute résolution pour aborder cette question. L'analyse des débits montre l'existence d'une évolution du régime des crues, avec une augmentation significative des crues sub -seuils pour des durées de 1,5h, 3h, 6h, 12h et 36h sur la période 1970-2010. L'analyse de l'échantillon de crues obtenue par cette analyse débit-durée-fréquence montre que les crues les plus importantes sont plutôt liées à des épisodes ayant conduit à un cumul de pluie important (> 80 mm en quelques jours). Une corrélation significative est aussi obtenue entre débit de base et coefficient de ruissellement, ce qui montre que ces crues peuvent être associées à des écoulements sur surfaces saturées. Les évolutions du climat (pluviométrie, température, ET0) ne permettent pas d'expliquer l'augmentation des crues observées. En revanche, l'occupation des sols entre 1990 et 2008 montre une augmentation des sur faces imperméables qui passent de 15,2 % de la surface totale du bassin en 1990 à 18,2 % en 1999 et 22,6 % en 2008. Cette évolution de l'imperméabilisation est mise en regard de l'accroissement de la population du bassin sur cette même période. Enfin, nous illustrons la réponse hydrologique du bassin versant avec deux épisodes pour lesquels le rôle de l'occupation des sols est différent. Le premier, celui du 02/12/2003 est typique d'une réponse par saturation du bassin, avec une contribution majeure des zon es rurales, suite à des cumuls pluviométriques importants. Le second, celui du 09/08/2009 représente un orage d'été, très court mais avec des intensités importantes, conduisant essentiellement à une réponse rapide des zones urbaines et pour lequel l'occupation des sols joue un rôle majeur

    Water balance simulation of a dryland soil during fallow under conventional and conservation tillage in semiarid Aragon, Northeast Spain

    Get PDF
    The definitive version is available at: http://www.sciencedirect.com/science/journal/01671987In Central Aragon, winter cereal is sown in the autumn (November–December), commonly after a 16–18 months fallow period aimed at conserving soil water. This paper uses the Simple Soil–Plant–Atmosphere Transfer (SiSPAT) model, in conjunction with field data, to study the effect of long fallowing on the soil water balance under three tillage management systems (conventional tillage, CT; reduced tillage, RT; and no-tillage, NT). This was on the assumption that soil properties would remain unchanged during the entire fallow season. Once the model was validated with data obtained before primary tillage implementation, the differences between simulated and observed soil water losses for the CT and RT treatments could be interpreted as the direct effect of the soil tillage system. The model was calibrated and validated in a long-term tillage experiment using data from three contrasting long-fallow seasons over the period 1999–2002, where special attention was paid to predicting soil hydraulic properties in the pre-tillage conditions. The capacity of the model to simulate the soil water balance and its components over long fallowing was demonstrated. Both the fallow rainfall pattern and the tillage management system affected the soil water budget and components predicted by the model. The model predicted that about 81% of fallow seasonal rainfall is lost by evaporation in long-fallow periods with both a dry autumn in the first year of fallow and a rainfall above normal in spring. Whereas, when the fallow season is characterised by a wet autumn during the first year of fallow the model predicted a decrease in soil water evaporation and an increase in water storage and deep drainage components. In this case, the predicted water lost by evaporation was higher under NT (64%) than under RT (56%) and CT (44%). The comparison between measured and simulated soil water loss showed that the practice of tillage decreased soil water conservation in the short term. The long-term analysis of the soil water balance showed that, in fallow periods with a wet autumn during the first year of fallow, the soil water loss measured under CT and RT was moderately greater than that predicted by the model.This research was supported by the Comisión Interministerial de Ciencia y Tecnología of Spain (grants AGF98-0261-CO2-02 and AGL2001-2238-CO2-01 and PNFPI pre-doctoral fellowship awarded to the first author) and the European Union (FEDER funds).Peer reviewe

    The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes

    Get PDF
    Summary This paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of recommendations for enhancing field observations in order to progress in process understanding and gather a larger set of data to improve the realism of distributed models

    Multi-criteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin) using a downward approach of model complexity

    No full text
    International audienceThis study is part of the AMMA – African Multidisciplinary Monsoon Analysis – project and aims at a better understanding and modelling of the Donga catchment (580 km2, Benin) behaviour. For this purpose, we applied the REW concept proposed by Reggiani et al. (1998, 1999), which allows the description of the main local processes at the sub-watershed scale. Such distributed hydrological models, which represent hydrological processes at various scales, should be evaluated not only on the discharge at the outlet but also on each of the represented processes and in several points of the catchment. This kind of multi-criteria evaluation is of importance in order to assess the global behaviour of the models. We applied such multi-criteria strategy to the Donga catchment (586 km2), in Benin. The work is supported by a strategy of observation, undertaken since 1998 consisting in a network of 20 rain gauges, an automatic meteorological station, 6 discharge stations and 18 wells. The first goal of this study is to assess the model ability to reproduce the discharge at the outlet, the water table dynamics in several points of the catchment and the vadose zone dynamics at the sub-catchment scale. We tested two spatial discretisations of increasing resolution. To test the internal structure of the model, we looked at its ability to represent also the discharge at intermediary stations. After adjustment of soil parameters, the model is shown to accurately represent discharge down to a drainage area of 100 km2, whereas poorer simulation is achieved on smaller catchments. We introduced the spatial variability of rainfall by distributing the daily rainfall over the REW and obtained a very low sensitivity of the model response to this variability. Our results suggest that processes in the unsaturated zone should first be improved, in order to better simulate soil water dynamics and represent perched water tables which were not included in this first modelling study

    Variabilité spatiale de la teneur en eau de surface des sols nus par mesures in situ et imagerie radar

    Get PDF
    National audienceOn présente l'analyse géostatistique de la teneur en eau de surface (0-6 cm de profondeur) collectée les 12 et 13 Mars 2009, sur une quinzaine de parcelles de sol nu d'un petit bassin péri-urbain proche de Lyon. Les mesures in situ, ont été collectées à deux échelles : une échelle locale sur des croix de longueur 20m et un pas d'espace de 1m et une échelle parcellaire sur 3 transects avec un pas de 20m environ. Les résultats montrent une corrélation de quelques m à échelle fine et de 20 à 50m à l'échelle de la parcelle. Après correction du bruit, calibration radiométrique et correction des effets géométriques et de pente, la comparaison des moyennes par parcelles issues de l'image radar TerraSAR-X et des mesures in situ est satisfaisante (R2=0.43) mais l'analyse intra-parcellaire reste à affiner. / This paper presents the geostatistical analysis of surface soil water content (0-6 cm depth), collected on March 12-13 2009, in about 15 bare soil fields located in a small suburban catchment close to Lyon. In situ data were sampled at two scales : a local scale on 20m-long crosses with a space step of about 1m; a field scale, with 3 transects and a space scale of about 20m. The results show a correlation of a few meters at the local scale and of about 20-50m at the field scale. After correction of the noise, radiometric calibration, geometric and slope effect correction, the comparison of the field averages derived from the TerraSAR-X image and of in situ data is satisfactory (R2=0.43), but the intra-field variability should be studied in more details

    Investigating the impact of two decades of urbanization on the water balance of the Yzeron peri-urban catchment, France

    No full text
    International audienceThis paper addresses the impact of 18 years of urbanization (1990-2008) on the Yzeron meso-scale peri-urban catchment (150 km²), located close to Lyon, France. A simplified version of the distributed hydrological model J2000 was used to perform long term simulations at a daily time step for several land use scenarios. These scenarios were derived from satellite SPOT images from years 1990, 1999 and 2008. The corresponding land use maps were classified into 5 classes depending on the percentage of impervious surfaces and the dominant non-impervious land use (agriculture or forest). The paper presents the methodology for the model setup and the simulation results for the main water balance components of the catchment: total runoff, runoff components, evapotranspiration and soil moisture. The results highlight the change of the catchment seasonal response from 1990 to 2008, mainly due to a change of the respective contributions of groundwater flow / surface runoff (+ 92% / - 28%, respectively). Monthly mean summer discharge unexpectedly appears to be higher in summer. It is provided by intermittent surface runoff generated by summer storm events. As surface runoff generated on urban surfaces is likely to carry a wide range of contaminants, this has a potential large impact on water quality
    corecore