14 research outputs found

    TOI-811b and TOI-852b: New transiting brown dwarfs with similar masses and very different radii and ages from the TESS mission

    Get PDF
    We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASA's Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses but very different radii and ages. Their host stars have similar masses, effective temperatures, and metallicities. The younger and larger transiting BD is TOI-811b at a mass of Mb = 59.9 ± 13.0MJ and radius of Rb = 1.26 ± 0.06RJ, and it orbits its host star in a period of P = 25.16551 ± 0.00004 days. We derive the host star's age of 93+61-29 Myr from an application of gyrochronology. The youth of this system, rather than external heating from its host star, is why this BD's radius is relatively large. This constraint on the youth of TOI-811b allows us to test substellar mass-radius evolutionary models at young ages where the radius of BDs changes rapidly. TOI-852b has a similar mass at Mb = 53.7 ± 1.4MJ but is much older (4 or 8 Gyr, based on bimodal isochrone results of the host star) and is also smaller with a radius of Rb = 0.83 ± 0.04RJ. TOI-852b's orbital period is P = 4.94561 ± 0.00008 days. TOI-852b joins the likes of other old transiting BDs that trace out the oldest substellar mass-radius evolutionary models where contraction of the BD's radius slows and approaches a constant value. Both host stars have a mass of M∗ = 1.32M⊙ ± 0.05 and differ in their radii, Teff, and [Fe/H], with TOI-811 having R∗ = 1.27 ± 0.09R⊙, Teff = 6107 ± 77 K, and [Fe/ H]=+0.40 ± 0.09 and TOI-852 having R∗ = 1.71 ± 0.04R⊙, Teff = 5768 ± 84 K, and [Fe/H]=+0.33 ± 0.09. We take this opportunity to examine how TOI-811b and TOI-852b serve as test points for young and old substellar isochrones, respectively

    Two Young Planetary Systems around Field Stars with Ages between 20 and 320 Myr from TESS

    Get PDF
    Planets around young stars trace the early evolution of planetary systems. We report the discovery and validation of two planetary systems with ages <∼300Myr from observations by the Transiting Exoplanet Survey Satellite (TESS). The 40 V320 Myr old G star TOI-251 hosts a 2.74+0.18-0.18 mini-Neptune with a 4.94 day period. The 20-160 Myr old K star TOI-942 hosts a system of inflated Neptune-sized planets, with TOI-942b orbiting in a period of 4.32 days with a radius of 4.81+0.20-0.20 and TOI-942c orbiting in a period of 10.16 days with a radius of 5.79-0.18+0.19 Though we cannot place either host star into a known stellar association or cluster, we can estimate their ages via their photometric and spectroscopic properties. Both stars exhibit significant photometric variability due to spot modulation, with measured rotation periods of .3.5 days. These stars also exhibit significant chromospheric activity, with age estimates from the chromospheric calcium emission lines and X-ray fluxes matching that estimated from gyrochronology. Both stars also exhibit significant lithium absorption, similar in equivalent width to well-characterized young cluster members. TESS has the potential to deliver a population of young planet-bearing field stars, contributing significantly to tracing the properties of planets as a function of their age

    The LHS 1678 System: Two Earth-sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc

    Get PDF
    We present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright (V J = 12.5, K s = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R ⊕ and 0.98 ± 0.06 R ⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M ⊕ and 1.4 M ⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R ⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung-Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars

    TOI-1231 b: A Temperate, Neptune-sized Planet Transiting the Nearby M3 Dwarf NLTT 24399

    Get PDF
    We report the discovery of a transiting, temperate, Neptune-sized exoplanet orbiting the nearby (d = 27.5 pc), M3V star TOI-1231 (NLTT 24399, L 248-27, 2MASS J10265947-5228099). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite and followed up with observations from the Las Cumbres Observatory and the Antarctica Search for Transiting ExoPlanets program. Combining the photometric data sets, we find that the newly discovered planet has a radius of {3.65}_{-0.15}^{+0.16}\,{R}_{\oplus } and an orbital period of 24.246 days. Radial velocity measurements obtained with the Planet Finder Spectrograph on the Magellan Clay telescope confirm the existence of the planet and lead to a mass measurement of 15.5 3.3 M ⊕. With an equilibrium temperature of just 330 K, TOI-1231 b is one of the coolest small planets accessible for atmospheric studies thus far, and its host star's bright near-infrared brightness (J = 8.88, Ks = 8.07) makes it an exciting target for the Hubble Space Telescope and the James Webb Space Telescope. Future atmospheric observations would enable the first comparative planetology efforts in the 250-350 K temperature regime via comparisons with K2-18 b. Furthermore, TOI-1231's high systemic radial velocity (70.5 km s-1) may allow for the detection of low-velocity hydrogen atoms escaping the planet by Doppler, shifting the H i Lyα stellar emission away from the geocoronal and interstellar medium absorption features

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters - TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) - based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01-1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 1.7 R J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31-0.30+0.28 M J and a statistically significant, nonzero orbital eccentricity of e = 0.074-0.022+0.021. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations

    Get PDF
    Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1° × 1°) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1° ×1° provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NOy for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10-3 to 10-2 cm-3) refines the agreement with in situ ozone, N2O and NOy levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections
    corecore