25 research outputs found

    Progressive multifocal leukoencephalopathy genetic risk variants for pharmacovigilance of immunosuppressant therapies

    Get PDF
    BackgroundProgressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML.MethodsWe hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years).ResultsThe four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7–20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis.ConclusionFor the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease

    Oligoclonal bands increase the specificity of MRI criteria to predict multiple sclerosis in children with radiologically isolated syndrome

    Get PDF
    Background: Steps towards the development of diagnostic criteria are needed for children with the radiologically isolated syndrome to identify children at risk of clinical demyelination. Objectives: To evaluate the 2005 and 2016 MAGNIMS magnetic resonance imaging criteria for dissemination in space for multiple sclerosis, both alone and with oligoclonal bands in cerebrospinal fluid added, as predictors of a first clinical event consistent with central nervous system demyelination in children with radiologically isolated syndrome. Methods: We analysed an international historical cohort of 61 children with radiologically isolated syndrome (18 years), defined using the 2010 magnetic resonance imaging dissemination in space criteria (Ped-RIS) who were followed longitudinally (mean 4.2 4.7 years). All index scans also met the 2017 magnetic resonance imaging dissemination in space criteria. Results: Diagnostic indices (95% confidence intervals) for the 2005 dissemination in space criteria, with and without oligoclonal bands, were: sensitivity 66.7% (38.4\u201388.2%) versus 72.7% (49.8\u201389.3%); specificity 83.3% (58.6\u201396.4%) versus 53.9% (37.2\u201369.9%). For the 2016 MAGNIMS dissemination in space criteria diagnostic indices were: sensitivity 76.5% (50.1\u201393.2%) versus 100% (84.6\u2013100%); specificity 72.7% (49.8\u201389.3%) versus 25.6% (13.0\u201342.1%). Conclusions: Oligoclonal bands increased the specificity of magnetic resonance imaging criteria in children with Ped-RIS. Clinicians should consider testing cerebrospinal fluid to improve diagnostic certainty. There is rationale to include cerebrospinal fluid analysis for biomarkers including oligoclonal bands in planned prospective studies to develop optimal diagnostic criteria for radiologically isolated syndrome in children

    Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension

    Get PDF
    Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Long-term outcomes of CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) in a consecutive series of 12 patients.

    Get PDF
    BACKGROUND: Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a central nervous system inflammatory disease. OBJECTIVE: To describe the disease course of CLIPPERS. DESIGN: A nationwide study was implemented to collect clinical, magnetic resonance imaging, cerebrospinal fluid, and brain biopsy specimen characteristics of patients with CLIPPERS. SETTING: Academic research. PATIENTS: Twelve patients with CLIPPERS. MAIN OUTCOME MEASURES: The therapeutic management of CLIPPERS was evaluated. RESULTS: Among 12 patients, 42 relapses were analyzed. Relapses lasted a mean duration of 2.5 months, manifested frequent cerebellar ataxia and diplopia, and were associated with a mean Expanded Disability Status Scale (EDSS) score of 4. Besides typical findings of CLIPPERS, magnetic resonance imaging showed brainstem mass effect in 5 patients, extensive myelitis in 3 patients, and closed ring enhancement in 1 patient. Inconstant oligoclonal bands were found on cerebrospinal fluid investigation in 4 patients, with an increased T-cell ratio of CD4 to CD8. Among 7 available brain biopsy specimens, staining was positive for perivascular CD4 T lymphocytes in 5 samples. Thirty-eight of 42 relapses were treated with pulse corticosteroid therapy, which led to improvement, with a mean residual EDSS score of 1.9 (range, 0-7). In 1 patient with untreated relapses, scores on the EDSS progressively increased to a score of 10 at death. Among 5 patients without long-term corticosteroid therapy, the mean annualized relapse rate was 0.5 (range, 0.25-2.8). Among 7 patients taking oral corticosteroids, no relapses occurred in those whose daily dose was 20 mg or higher. No progressive course of CLIPPERS was observed. Four patients with a final EDSS score of 4 or higher had experienced previous severe relapses (EDSS score, ≥5) and brainstem and spinal cord atrophy. CONCLUSIONS: CLIPPERS is a relapsing-remitting disorder without progressive forms. Long-term disability is correlated with the severity of previous relapses. Further studies are needed to confirm that prolonged corticosteroid therapy prevents further relapses.journal article2012 Julimporte

    High-throughput mutational analysis of TOR1A in primary dystonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the c.904_906delGAG mutation in Exon 5 of <it>TOR1A </it>typically manifests as early-onset generalized dystonia, DYT1 dystonia is genetically and clinically heterogeneous. Recently, another Exon 5 mutation (c.863G>A) has been associated with early-onset generalized dystonia and some ΔGAG mutation carriers present with late-onset focal dystonia. The aim of this study was to identify <it>TOR1A </it>Exon 5 mutations in a large cohort of subjects with mainly non-generalized primary dystonia.</p> <p>Methods</p> <p>High resolution melting (HRM) was used to examine the entire <it>TOR1A </it>Exon 5 coding sequence in 1014 subjects with primary dystonia (422 spasmodic dysphonia, 285 cervical dystonia, 67 blepharospasm, 41 writer's cramp, 16 oromandibular dystonia, 38 other primary focal dystonia, 112 segmental dystonia, 16 multifocal dystonia, and 17 generalized dystonia) and 250 controls (150 neurologically normal and 100 with other movement disorders). Diagnostic sensitivity and specificity were evaluated in an additional 8 subjects with known ΔGAG DYT1 dystonia and 88 subjects with ΔGAG-negative dystonia.</p> <p>Results</p> <p>HRM of <it>TOR1A </it>Exon 5 showed high (100%) diagnostic sensitivity and specificity. HRM was rapid and economical. HRM reliably differentiated the <it>TOR1A </it>ΔGAG and c.863G>A mutations. Melting curves were normal in 250/250 controls and 1012/1014 subjects with primary dystonia. The two subjects with shifted melting curves were found to harbor the classic ΔGAG deletion: 1) a non-Jewish Caucasian female with childhood-onset multifocal dystonia and 2) an Ashkenazi Jewish female with adolescent-onset spasmodic dysphonia.</p> <p>Conclusion</p> <p>First, HRM is an inexpensive, diagnostically sensitive and specific, high-throughput method for mutation discovery. Second, Exon 5 mutations in <it>TOR1A </it>are rarely associated with non-generalized primary dystonia.</p

    Data_Sheet_1_Progressive multifocal leukoencephalopathy genetic risk variants for pharmacovigilance of immunosuppressant therapies.pdf

    Get PDF
    BackgroundProgressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML.MethodsWe hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years).ResultsThe four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7–20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis.ConclusionFor the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.</p
    corecore