280 research outputs found
Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators
Experimental observations of time delay induced amplitude death in a pair of
coupled nonlinear electronic circuits that are individually capable of
exhibiting limit cycle oscillations are described. In particular, the existence
of multiply connected death islands in the parameter space of the coupling
strength and the time delay parameter for coupled identical oscillators is
established. The existence of such regions was predicted earlier on theoretical
grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The
experiments also reveal the occurrence of multiple frequency states, frequency
suppression of oscillations with increased time delay and the onset of both
in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let
Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)
The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age
Revisiting the population of Galactic open clusters
We present results of a study of the galactic open cluster population based
on the all-sky catalogue ASCC-2.5 (I/280A) compiled from Tycho-2, Hipparcos and
other catalogues. The sample of optical clusters from ASCC-2.5 is complete up
to about 850 pc from the Sun. The symmetry plane of the clusters' distribution
is determined to be at pc, and the scale height of open clusters
is only pc. The total surface density and volume density in the
symmetry plane are 114 kpc and kpc,
respectively. We find the total number of open clusters in the Galactic disk to
be of order of 10 at present. Fluctuations in the spatial and velocity
distributions are attributed to the existence of four open cluster complexes
(OCCs) of different ages containing up to a few tens of clusters. Members in an
OCC show the same kinematic behaviour, and a narrow age spread. We find, that
the youngest cluster complex, OCC~1 (), with 19 deg inclination to
the Galactic plane, is apparently a signature of Gould's Belt. The most
abundant OCC~2 complex has moderate age (). The clusters of
the Perseus-Auriga group, having the same age as OCC~2, but different
kinematics are seen in breaks between Perseus-Auriga clouds. The oldest () and sparsest group was identified due to a large motion in the
Galactic anticentre direction. Formation rate and lifetime of open clusters are
found to be kpcMyr and 32231 Myr,
respectively. This implies a total number of cluster generations in the history
of the Galaxy between 30 to 40. We estimate that less than about 10% of the
total Galactic stellar disk population has ever passed an open cluster
membership.Comment: 21 pages, 11 figures, Fig2ab, Fig.7, Fig.8 and Fig.10 are only
available as jpeg files, accepted for publication in Astronomy and
Astrophysic
Thermal stratification and meromixis in four dilute temperate zone lakes
Four adjacent lakes (Arco, Budd, Deming, and Josephine) within Itasca State Park in Minnesota, USA, are reported to be meromictic in the scientific literature. However, seasonally persistent chemoclines have never been documented. We collected seasonal profiles of temperature and specific conductance and placed temperature sensor chains in two lakes for ∼1 year to explore whether these lakes remain stratified through seasonal mixing events and what factors contribute to their stability. The results indicate that all lakes are predominantly thermally stratified and are prone to mixing in isothermal periods during spring and fall. Despite brief, semi-annual erosion of thermal stratification, Deming Lake showed no signs of complete mixing from 2006–2009 and 2019–2022 and is likely meromictic. However, the other lakes are not convincingly meromictic. Geochemical data indicate that water in Budd Lake, which contains the most water, is predominantly sourced from precipitation. The water in the other three lakes is of the calcium–magnesium–bicarbonate type, reflecting a source of water that has interacted with the deglaciated landscape. δ18OH2O and δ2HH2O measurements indicate the lakes are supplied by precipitation modified by evaporation. Josephine, Arco, and Deming lakes sit in a valley with likely permeable sediments and may be hydrologically connected through wetlands and recharged with shallow groundwater, as no streams are present. The water residence time in meromictic Deming Lake is short (100 d), yet it maintains a large reservoir of dissolved iron, indicating that shallow groundwater may be an additional source of water and dissolved ions. All four lakes develop subsurface chlorophyll maxima layers during the summer. All lakes also develop subsurface oxygen maxima that may result from oxygen trapping in the spring by rapidly developed summer thermoclines. Documenting the mixing status and general chemistry of these lakes enhances their utility and accessibility for future biogeochemical studies, which is important as lake stratification and anoxia are becoming more prevalent due to changes in climate and land use.</p
Improvement in the Reproducibility and Accuracy of DNA Microarray Quantification by Optimizing Hybridization Conditions
BACKGROUND: DNA microarrays, which have been increasingly used to monitor mRNA transcripts at a global level, can provide detailed insight into cellular processes involved in response to drugs and toxins. This is leading to new understandings of signaling networks that operate in the cell, and the molecular basis of diseases. Custom printed oligonucleotide arrays have proven to be an effective way to facilitate the applications of DNA microarray technology. A successful microarray experiment, however, involves many steps: well-designed oligonucleotide probes, printing, RNA extraction and labeling, hybridization, and imaging. Optimization is essential to generate reliable microarray data. RESULTS: Hybridization and washing steps are crucial for a successful microarray experiment. By following the hybridization and washing conditions recommended by an oligonucleotide provider, it was found that the expression ratios were compressed greater than expected and data analysis revealed a high degree of non-specific binding. A series of experiments was conducted using rat mixed tissue RNA reference material (MTRRM) and other RNA samples to optimize the hybridization and washing conditions. The optimized hybridization and washing conditions greatly reduced the non-specific binding and improved the accuracy of spot intensity measurements. CONCLUSION: The results from the optimized hybridization and washing conditions greatly improved the reproducibility and accuracy of expression ratios. These experiments also suggested the importance of probe designs using better bioinformatics approaches and the need for common reference RNA samples for platform performance evaluation in order to fulfill the potential of DNA microarray technology
A reference panel of 64,976 haplotypes for genotype imputation.
We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently
- …