122 research outputs found

    Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests

    Get PDF
    Simulation models such as forest patch models can be used to forecast the development of forest structural attributes over time. However, predictions of such models with respect to the impact of forest dynamics on the long-term protective effect of mountain forests may be of limited accuracy where tree regeneration is simulated with little detail. For this reason, we improved the establishment submodel of the ForClim forest patch model by implementing a more detailed representation of tree regeneration. Our refined submodel included canopy shading and ungulate browsing, two important constraints to sapling growth in mountain forests. To compare the old and the new establishment submodel of ForClim, we simulated the successional dynamics of the Stotzigwald protection forest in the Swiss Alps over a 60-year period. This forest provides protection for an important traffic route, but currently contains an alarmingly low density of tree regeneration. The comparison yielded a significantly longer regeneration period for the new model version, bringing the simulations into closer agreement with the known slow stand dynamics of mountain forests. In addition, the new model version was applied to forecast the future ability of the Stotzigwald forest to buffer the valley below from rockfall disturbance. Two scenarios were simulated: (1) canopy shading but no browsing impact, and (2) canopy shading and high browsing impact. The simulated stand structures were then compared to stand structure targets for rockfall protection, in order to assess their long-term protective effects. Under both scenarios, the initial sparse level of tree regeneration affected the long-term protective effect of the forest, which considerably declined during the first 40years. In the complete absence of browsing, the density of small trees increased slightly after 60years, raising hope for an eventual recovery of the protective effect. In the scenario that included browsing, however, the density of small trees remained at very low levels. With our improved establishment submodel, we provide an enhanced tool for studying the impacts of structural dynamics on the long-term protective effect of mountain forests. For certain purposes, it is important that predictive models of forest dynamics adequately represent critical processes for tree regeneration, such as sapling responses to low light levels and high browsing pressur

    A Macroprudential Perspective on the Regulatory Boundaries of US Financial Assets

    Get PDF
    This paper uses data from the Financial Accounts of the United States to map out the regulatory boundaries of assets held by US financial institutions from a macroprudential perspective. We provide a quantitative measure of the macroprudential regulatory boundary—the perimeter between the part of the financial sector that is subject to some form of macroprudential regulatory oversight and that which is not—and show how it has evolved over the past 40 years. Additionally, we measure the boundaries between different regulatory agencies and financial institutions that operate within the regulatory perimeter and illustrate how these boundaries potentially become blurred in the face of regulatory overlap. Quantifying the macroprudential regulatory boundary and the boundaries for different regulators within the perimeter is informative for assessing financial stability risks over the credit cycle

    The design and use of forest decision support systems in Switzerland

    Get PDF

    Strict Forest Reserve Research in the Margin of the Carpathians, the Vár-hegy Case-Study

    Get PDF
    Sixteen forest reserves are situated in the northern part of Hungary which belongs to the Carpathian region according to EURAC delimitation (Ruffini et al. 2006). These Hungarian forest reserves expand the natural forest remnant/forest reserve net of the Carpathians towards the lower hilly region, representing the deciduous beech and oak forest belts near their lower (xeric) distribution limits. This paper outlines the Hungarian forest reserves belonging to the Carpathian region and the preliminary results of current projects in the Vár-hegy Forest Reserve (Bükk Mts., Hungary) as a case study. The alteration of tree species composition was investigated here based on the reconstruction of forest history in the previous 130 years (management period) and analyses of forest stand inventory. In another project CO2 sequestration changes of these forest stands were modeled since the clear-cutting in the 1880th and carbon stored in the forest ecosystem compartments was estimated. Our results show that the forest reserve stands are presently in a transition state from the managed forest towards a more natural mixed forest with several age-classes

    Enhancing resilience to address challenges in forest management

    Get PDF

    Visual speech differentially modulates beta, theta, and high gamma bands in auditory cortex

    Get PDF
    Speech perception is a central component of social communication. While principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues (e.g., speech content, timing, and speaker identity). Previous research has shown that visual speech modulates activity in cortical areas subserving auditory speech perception, including the superior temporal gyrus (STG), potentially through feedback connections from the multisensory posterior superior temporal sulcus (pSTS). However, it is unknown whether visual modulation of auditory processing in the STG is a unitary phenomenon or, rather, consists of multiple temporally, spatially, or functionally distinct processes. To explore these questions, we examined neural responses to audiovisual speech measured from intracranially implanted electrodes within the temporal cortex of 21 patients undergoing clinical monitoring for epilepsy. We found that visual speech modulates auditory processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of activity that differ across theta, beta, and high-gamma frequency bands. Before speech onset, visual information increased high-gamma power in the posterior STG and suppressed beta power in mid-STG regions, suggesting crossmodal prediction of speech signals in these areas. After sound onset, visual speech decreased theta power in the middle and posterior STG, potentially reflecting a decrease in sustained feedforward auditory activity. These results are consistent with models that posit multiple distinct mechanisms supporting audiovisual speech perception and provide a crucial map for subsequent studies to identify the types of visual features that are encoded by these separate mechanisms.This study was supported by NIH Grant R00 DC013828 A. Beltz was supported by the Jacobs Foundation.http://deepblue.lib.umich.edu/bitstream/2027.42/167729/1/OriginalManuscript.pdfDescription of OriginalManuscript.pdf : Preprint of the article "Multiple auditory responses to visual speech"SEL

    Pseudo-Synesthesia through Reading Books with Colored Letters

    Get PDF
    Background Synesthesia is a phenomenon where a stimulus produces consistent extraordinary subjective experiences. A relatively common type of synesthesia involves perception of color when viewing letters (e.g. the letter ‘a’ always appears as light blue). In this study, we examine whether traits typically regarded as markers of synesthesia can be acquired by simply reading in color. Methodology/Principal Findings Non-synesthetes were given specially prepared colored books to read. A modified Stroop task was administered before and after reading. A perceptual crowding task was administered after reading. Reading one book (>49,000 words) was sufficient to induce effects regarded as behavioral markers for synesthesia. The results of the Stroop tasks indicate that it is possible to learn letter-color associations through reading in color (F(1, 14) = 5.85, p = .030). Furthermore, Stroop effects correlated with subjective reports about experiencing letters in color (r(13) = 0.51, p = .05). The frequency of viewing letters is related to the level of association as seen by the difference in the Stroop effect size between upper- and lower-case letters (t(14) = 2.79, p = .014) and in a subgroup of participants whose Stroop effects increased as they continued to read in color. Readers did not show significant performance advantages on the crowding task compared to controls. Acknowledging the many differences between trainees and synesthetes, results suggest that it may be possible to acquire a subset of synesthetic behavioral traits in adulthood through training. Conclusion/Significance To our knowledge, this is the first evidence of acquiring letter-color associations through reading in color. Reading in color appears to be a promising avenue in which we may explore the differences and similarities between synesthetes and non-synesthetes. Additionally, reading in color is a plausible method for a long-term ‘synesthetic’ training program

    The COGs (context, object, and goals) in multisensory processing

    Get PDF
    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications
    corecore