143 research outputs found

    Hard Thermal Loops in the n-Dimensional phi3 Theory

    Full text link
    We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional phi3 theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.Comment: 3 pages, one figure. To be published in the Brazilian Journal of Physic

    Nonequilibrium Dynamics in Noncommutative Spacetime

    Get PDF
    We study the effects of spacetime noncommutativity on the nonequilibrium dynamics of particles in a thermal bath. We show that the noncommutative thermal bath does not suffer from any further IR/UV mixing problem in the sense that all the finite-temperature non-planar quantities are free from infrared singularities. We also point out that the combined effect of finite temperature and noncommutative geometry has a distinct effect on the nonequilibrium dynamics of particles propagating in a thermal bath: depending on the momentum of the mode of concern, noncommutative geometry may switch on or switch off their decay and thermalization. This momentum dependent alternation of the decay and thermalization rates could have significant impacts on the nonequilibrium phenomena in the early universe at which spacetime noncommutativity may be present. Our results suggest a re-examination of some of the important processes in the early universe such as reheating after inflation, baryogenesis and the freeze-out of superheavy dark matter candidates.Comment: 24 pages, 2 figure

    Electronic cigarette use in 12 European countries. Results from the TackSHS survey.

    Get PDF
    BACKGROUND: Limited data on electronic cigarette prevalence, patterns and settings of use are available from several European countries. METHODS: Within the TackSHS project, a face-to-face survey was conducted in 2017-2018 in 12 European countries (Bulgaria, England, France, Germany, Greece, Ireland, Italy, Latvia, Poland, Portugal, Romania and Spain). Overall, 11,876 participants, representative of the population aged ≄15 years in each country, provided information on electronic cigarette. RESULTS: 2.4% (95% confidence interval, CI: 2.2-2.7) of the subjects (2.5% among men and 2.4% among women; 0.4% among never, 4.4% among current- and 6.5% among ex-smokers) reported current use of electronic cigarette, ranging from 0.6% in Spain to 7.2% in England. Of the 272 electronic cigarette users, 52.6% were dual users (i.e., users of both electronic and conventional cigarettes) and 58.8% used liquids with nicotine. In all, 65.1% reported using electronic cigarette in at least one indoor setting where smoking is forbidden, in particular in workplaces (34.9%), and bars and restaurants (41.5%). Multivariable logistic regression analysis showed that electronic cigarette use was lower among older individuals (p for trend <0.001) and higher among individuals with high level of education (p for trend 0.040). Participants from countries with higher tobacco cigarette prices more frequently reported electronic cigarette use (odds ratio 3.62; 95% CI: 1.80-7.30). CONCLUSIONS: Considering the whole adult population of these 12 European countries, more than 8.3 million people use electronic cigarettes. The majority of users also smoked conventional cigarettes, used electronic cigarettes with nicotine and consumed electronic cigarettes in smoke-free indoor areas

    Josephson junction microwave amplifier in self-organized noise compression mode

    Get PDF
    The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation

    Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MSn techniques

    Get PDF
    The number of so-called new psychoactive substances (NPS) is still increasing by modification of the chemical structure of known (scheduled) drugs. As analogues of amphetamines, 2-aminopropyl-benzofurans were sold. They were consumed because of their euphoric and empathogenic effects. After the 5-(2-aminopropyl)benzofurans, the 6-(2-aminopropyl)benzofuran isomers appeared. Thus, the question arose whether the metabolic fate, the mass spectral fragmentation, and the detectability in urine are comparable or different and how an intake can be differentiated. In the present study, 6-(2-aminopropyl)benzofuran (6-APB) and its N-methyl derivative 6-MAPB (N-methyl-6-(2-aminopropyl)benzofuran) were investigated to answer these questions. The metabolites of both drugs were identified in rat urine and human liver preparations using GC-MS and/or liquid chromatography-high resolution-mass spectrometry (LC-HR-MSn). Besides the parent drug, the main metabolite of 6-APB was 4-carboxymethyl-3-hydroxy amphetamine and the main metabolites of 6-MAPB were 6-APB (N-demethyl metabolite) and 4-carboxymethyl-3-hydroxy methamphetamine. The cytochrome P450 (CYP) isoenzymes involved in the 6-MAPB N-demethylation were CYP1A2, CYP2D6, and CYP3A4. An intake of a common users’ dose of 6-APB or 6-MAPB could be confirmed in rat urine using the authors’ GC-MS and the LC-MSn standard urine screening approaches with the corresponding parent drugs as major target allowing their differentiation. Furthermore, a differentiation of 6-APB and 6-MAPB in urine from their positional isomers 5-APB and 5-MAPB was successfully performed after solid phase extraction and heptafluorobutyrylation by GC-MS via their retention times

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death

    Get PDF
    Galectin-1 (gal-1), an endogenous ÎČ-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 ΌM desipramine, 20 ΌM imipramine), with the protein kinase C-ÎŽ (PKCÎŽ) inhibitor rottlerin (10 ΌM), and with the specific PKCΞ pseudosubstrate inhibitor (30 ΌM) indicates that ceramide and phosphorylation by PKCÎŽ and PKCΞ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 ΌM) or inhibition of AP-1 activation by curcumin (2 ΌM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation

    Etiological factors in primary hepatic B-cell lymphoma

    Get PDF
    Sixty-four cases of malignant lymphoma involving the liver were examined. Of these, 20 cases were histologically confirmed to be primary hepatic B-cell lymphoma. Twelve of these 20 cases were diffuse large B-cell lymphoma (DLBCL) and eight cases were mucosa-associated lymphoid tissue (MALT) lymphoma. Of the 12 cases of DLBCL, six were immunohistologically positive for CD10 and/or Bcl6 (indicating a germinal center phenotype), six were positive for Bcl2, and five were positive for CD25. Eight of the 12 DLBCL cases (66.7%) and two of the eight MALT lymphoma cases (25%) had serum anti-hepatitis C virus (HCV) antibodies and HCV RNA. The incidence of HCV infection was significantly higher in the hepatic DLBCL cases than in systemic intravascular large B-cell cases with liver involvement (one of 11 cases, 9.1%) and T/NK-cell lymphoma cases (one of 19 cases, 5.3%) (p < 0.01 for both). Two hepatic DLBCL cases (16.7%) had rheumatoid arthritis treated with methotrexate, and four MALT lymphoma cases (50%) had Sjögren’s syndrome, primary biliary cirrhosis, or autoimmune hepatitis; one case in each of these two groups was complicated by chronic HCV-seropositive hepatitis. Although primary hepatic lymphoma is rare, persistent inflammatory processes associated with HCV infection or autoimmune disease may play independent roles in the lymphomagenesis of hepatic B cells

    Glycobiology of cell death: when glycans and lectins govern cell fate

    Get PDF
    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.Fil: Lichtenstein, Rachel. Ben-Gurion University of the Negev. Faculty of Engineering. Department of Biotechnology Engineering; IsraelFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Biologica; Argentin
    • 

    corecore