10,506 research outputs found

    Cantilever-based Resonant Microsensors with Integrated Temperature Modulation for Transient Chemical Analysis

    Get PDF
    This work introduces a resonant cantilever platform with integrated temperature modulation for real-time chemical sensing. Embedded heaters allow for rapid thermal cycling of individual sensors, thereby enabling real-time transient signal analysis without the need for a microfluidic setup to switch between analyte and reference gases. Compared to traditional mass-sensitive microsensors operating in steady state, the on-chip generation of signal transients provides additional information for analyte discrimination

    High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    Get PDF
    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies

    A pulsed atomic soliton laser

    Full text link
    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a non-dispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure

    On Matrices, Automata, and Double Counting

    Get PDF
    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    Grey solitons in a strongly interacting superfluid Fermi Gas

    Full text link
    The Bardeen-Cooper-Schrieffer to Bose-Einstein condensate (BCS to BEC) crossover problem is solved for stationary grey solitons via the Boguliubov-de Gennes equations at zero temperature. These \emph{crossover solitons} exhibit a localized notch in the gap and a characteristic phase difference across the notch for all interaction strengths, from BEC to BCS regimes. However, they do not follow the well-known Josephson-like sinusoidal relationship between velocity and phase difference except in the far BEC limit: at unitary the velocity has a nearly linear dependence on phase difference over an extended range. For fixed phase difference the soliton is of nearly constant depth from the BEC limit to unitarity and then grows progressively shallower into the BCS limit, and on the BCS side Friedel oscillations are apparent in both gap amplitude and phase. The crossover soliton appears fundamentally in the gap; we show, however, that the density closely follows the gap, and the soliton is therefore observable. We develop an approximate power law relationship to express this fact: the density of grey crossover solitons varies as the square of the gap amplitude in the BEC limit and a power of about 1.5 at unitarity.Comment: 10 pages, 6 figures, part of New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas," in pres

    Semi-soft Nematic Elastomers and Nematics in Crossed Electric and Magnetic Fields

    Get PDF
    Nematic elastomers with a locked-in anisotropy direction exhibit semi-soft elastic response characterized by a plateau in the stress-strain curve in which stress does not change with strain. We calculate the global phase diagram for a minimal model, which is equivalent to one describing a nematic in crossed electric and magnetic fields, and show that semi-soft behavior is associated with a broken symmetry biaxial phase and that it persists well into the supercritical regime. We also consider generalizations beyond the minimal model and find similar results.Comment: 4 pages, 3 figure

    The Fragmenting Superbubble Associated with the HII Region W4

    Get PDF
    New observations at high latitudes above the HII region W4 show that the structure formerly identified as a chimney candidate, an opening to the Galactic halo, is instead a superbubble in the process of fragmenting and possibly evolving into a chimney. Data at high Galactic latitudes (b > 5 degrees) above the W3/W4 star forming region at 1420 and 408 MHz Stokes I (total power) and 1420 MHz Stokes Q and U (linear polarization) reveal an egg-shaped structure with morphological correlations between our data and the H-alpha data of Dennison, Topasna, & Simonetti. Polarized intensity images show depolarization extending from W4 up the walls of the superbubble, providing strong evidence that the radio continuum is generated by thermal emission coincident with the H-alpha emission regions. We conclude that the parts of the HII region hitherto known as W4 and the newly revealed thermal emission are all ionized by the open cluster OCl 352. Assuming a distance of 2.35 kpc, the ovoid structure is 164 pc wide and extends 246 pc above the mid-plane of the Galaxy. The shell's emission decreases in total-intensity and polarized intensity in various locations, appearing to have a break at its top and another on one side. Using a geometric analysis of the depolarization in the shell's walls, we estimate that a magnetic field line-of-sight component of 3 to 5 uG exists in the shell. We explore the connection between W4 and the Galactic halo, considering whether sufficient radiation can escape from the fragmenting superbubble to ionize the kpc-scale H-alpha loop discovered by Reynolds, Sterling & Haffner.Comment: 42 pages, 14 figures; Accepted for publication in Ap
    corecore