137 research outputs found

    Lorentz-Lorenz Coefficient, Critical Point Constants, and Coexistence Curve of 1,1-Difluoroethylene

    Full text link
    We report measurements of the Lorentz-Lorenz coefficient density dependence, the critical temperature, and the critical density, of the fluid 1,1-difluoroethylene. Lorentz-Lorenz coefficient data were obtained by measuring refractive index and density of the same fluid sample independently of one another. Accurate determination of the Lorentz-Lorenz coefficient is necessary for transformation of refractive index data into density data from optics-based experiments on critical phenomena of fluid systems done with different apparatus, with which independent measurement of the refractive indes and density is not possible. Measurements were made along the coexistence curve of the fluid and span the density range 0.01 to 0.80 g/cc. The Lorentz-Lorenz coefficient results show a stronger density dependence along the coexistence curve than previously observed in other fluids, with a monotonic decrease from a density of about 0.2 g/cc onwards, and an overall variation of about 2.5% in the density range studied. No anomaly in the Lorentz-Lorenz coefficient was observed near the critical density. The critical temperature is measured at Tc=(302.964+-0.002) K (29.814 C) and the measured critical density is (0.4195+-0.0018)g/cc.Comment: 14 pages, 6 figures, MikTeX 2.4, submitted to Physical Review

    Integrating tropical research into biology education is urgently needed

    Get PDF
    Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperatezone lens. Integrating tropical research into biology education is urgently needed to tackle these issues. The tropics are engines of Earth systems that regulate global cycles of carbon and water, and are thus critical for management of greenhouse gases. Compared with higher-latitude areas, tropical regions contain a greater diversity of biomes, organisms, and complexity of biological interactions. The tropics house the majority of the world’s human population and provide important global commodities from species that originated there: coffee, chocolate, palm oil, and species that yield the cancer drugs vincristine and vinblastine. Tropical regions, especially biodiversity hotspots, harbor zoonoses, thereby having an important role in emerging infectious diseases amidst the complex interactions of global environmental change and wildlife migration [1]. These well-known roles are oversimplified, but serve to highlight the global biological importance of tropical systems. Despite the importance of tropical regions, biology curricula worldwide generally lack coverage of tropical research. Given logistical, economic, or other barriers, it is difficult for undergraduate biology instructors to provide their students with field-based experience in tropical biology research in a diverse range of settings, an issue exacerbated by the Coronavirus Disease 2019 (COVID-19) pandemic. Even in the tropics, field-based experience may be limited to home regions. When tropical biology is introduced in curricula, it is often through a temperate- zone lens that does not do justice to the distinct ecosystems, sociopolitical histories, and conservation issues that exist across tropical countries and regions [2]. The tropics are often caricatured as distant locations known for their remarkable biodiversity, complicated species interactions, and unchecked deforestation. This presentation, often originating from a colonial and culturally biased perspective, may fail to highlight the role of tropical ecosystems in global environmental and social challenges that accompany rising temperatures, worldwide biodiversity loss, zoonotic pandemics, and the environmental costs of ensuring food, water, and other ecosystem services for humans [3]

    Specialist nursing and community support for the carers of people with dementia living at home: an evidence synthesis.

    Get PDF
    Specialist nurses are one way of providing support for family carers of people with dementia, but relatively little is known about what these roles achieve, or if they are more effective than roles that do not require a clinical qualification. The aim of this review was to synthesise the literature on the scope and effectiveness of specialist nurses, known as Admiral Nurses, and set this evidence in the context of other community-based initiatives to support family carers of people with dementia. We undertook a systematic review of the literature relating to the scope and effectiveness of Admiral Nurses and a review of reviews of interventions to support the family carers of people with dementia. To identify studies, we searched electronic databases, undertook lateral searches and contacted experts. Searches were undertaken in November 2012. Results are reported narratively with key themes relating to Admiral Nurses identified using thematic synthesis. We included 33 items relating to Admiral Nurses (10 classified as research) and 11 reviews evaluating community-based support for carers of people with dementia. There has been little work to evaluate specific interventions provided by Admiral Nurses, but three overarching thematic categories were identified: (i) relational support, (ii) co-ordinating and personalising support and (iii) challenges and threats to the provision of services by Admiral Nurses. There was an absence of clearly articulated goals and service delivery was subject to needs of the host organisation and the local area. The reviews of community-based support for carers of people with dementia included 155 studies but, in general, evidence that interventions reduced caregiver depression or burden was weak, although psychosocial and educational interventions may reduce depression in carers. Community support for carers of people with dementia, such as that provided by Admiral Nurses, is valued by family carers, but the impact of such initiatives is not clearly established

    The first sub-70 minute non-interacting WD-BD system: EPIC212235321

    Get PDF
    We present the discovery of the shortest-period, non-interacting, white dwarf-brown dwarf post-common-envelope binary known. The K2 light curve shows the system, EPIC 21223532 has a period of 68.2 min and is not eclipsing, but does show a large reflection effect due to the irradiation of the brown dwarf by the white dwarf primary. Spectra show hydrogen, magnesium and calcium emission features from the brown dwarf's irradiated hemisphere, and the mass indicates the spectral type is likely to be L3. Despite having a period substantially lower than the cataclysmic variable period minimum, this system is likely a pre-cataclysmic binary, recently emerged from the common-envelope. These systems are rare, but provide limits on the lowest mass object that can survive common envelope evolution, and information about the evolution of white dwarf progenitors, and post-common envelope evolution

    Microbial community composition in sediments resists perturbation by nutrient enrichment

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1540–1548, doi:10.1038/ismej.2011.22.Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.Funding for this research came from NSF(DEB-0717155 to JEH, DBI-0400819 to JLB). Support for the sequencing facility came from NIH and NSF (NIH/NIEHS-P50-ES012742-01 and NSF/OCE 0430724-J Stegeman PI to HGM and MLS, and WM Keck Foundation to MLS). Salary support provided from Princeton University Council on Science and Technology to JLB. Support for development of the functional gene microarray provided by NSF/OCE99-081482 to BBW. The Plum Island fertilization experiment was funded by NSF (DEB 0213767 and DEB 0816963)

    Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    Get PDF
    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases

    Denitrification likely catalyzed by endobionts in an allogromiid foraminifer

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 951–960, doi:10.1038/ismej.2011.171.Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear and it is possible that the ability to perform complete denitrification is due to symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic when anoxia was widespread.This research was supported by NSF grant EF-0702491 to JMB, KLC and VPE; some ship support was provided by NSF MCB-0604084 to VPE and JMB.2012-06-0
    • 

    corecore