248 research outputs found

    Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae

    Get PDF
    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. We find πabs=3.82±0.2\pi_{abs} = 3.82 \pm 0.2 mas. Spectral classifications and VRIJHKT2_2M and DDO51 photometry of the astrometric reference frame surrounding RR Lyr indicate that field extinction is low along this line of sight. We estimate =0.07\pm0.03 for these reference stars. The extinction suffered by RR Lyr becomes one of the dominant contributors to the uncertainty in its absolute magnitude. Adopting the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61 ^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 - 18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr variables in the LMC, , remaining a significant uncertainty. We compare this result to more than 80 other determinations of the distance modulus of the LMC.Comment: Several typos corrected. To appear in The Astronomical Journal, January 200

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z=0.44 galaxy cluster MACS 1206.2-0847

    Get PDF
    We use an unprecedented data-set of about 600 redshifts for cluster members, obtained as part of a VLT/VIMOS large programme, to constrain the mass profile of the z=0.44 cluster MACS J1206.2-0847 over the radial range 0-5 Mpc (0-2.5 virial radii) using the MAMPOSSt and Caustic methods. We then add external constraints from our previous gravitational lensing analysis. We invert the Jeans equation to obtain the velocity-anisotropy profiles of cluster members. With the mass-density and velocity-anisotropy profiles we then obtain the first determination of a cluster pseudo-phase-space density profile. The kinematics and lensing determinations of the cluster mass profile are in excellent agreement. This is very well fitted by a NFW model with mass M200=(1.4 +- 0.2) 10^15 Msun and concentration c200=6 +- 1, only slightly higher than theoretical expectations. Other mass profile models also provide acceptable fits to our data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere) or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of the passive and star-forming cluster members are similar, close to isotropic near the center and increasingly radial outside. Passive cluster members follow extremely well the theoretical expectations for the pseudo-phase-space density profile and the relation between the slope of the mass-density profile and the velocity anisotropy. Star-forming cluster members show marginal deviations from theoretical expectations. This is the most accurate determination of a cluster mass profile out to a radius of 5 Mpc, and the only determination of the velocity-anisotropy and pseudo-phase-space density profiles of both passive and star-forming galaxies for an individual cluster [abridged]Comment: A&A in press; 22 pages, 19 figure

    Hydrogen Epoch of Reionization Array (HERA)

    Get PDF
    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=612z=6-12), and to explore earlier epochs of our Cosmic Dawn (z30z\sim30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table

    The First Definitive Binary Orbit Determined with the Hubble Space Telescope Fine Guidance Sensors: Wolf 1062 (Gliese 748)

    Get PDF
    The M dwarf binary, Wolf 1062 (Gliese 748), has been observed with the Hubble Space Telescope (HST) Fine Guidance Sensor 3 in the transfer function scan mode to determine the apparent orbit. This is the first orbit defined fully and exclusively with HST, and is the most accurate definitive orbit for any resolved, noneclipsing system. The orbital period is 2.4490 ± 0.0119 yr and the semimajor axis is 01470 ± 00007—both quantities are now known to better than 1%. Using the weighted mean of seven parallax measurements and these HST data, we find the system mass to be 0.543 ± 0.031 M⊙, where the error of 6% is due almost entirely to the parallax error. An estimated fractional mass from the infrared brightness ratio and infrared mass-luminosity relation yields a mass for the primary of 0.37 M⊙, and the secondary falls in the regime of very low mass stars, with a mass of only 0.17 M⊙

    Astrometry with The \u3cem\u3eHubble Space Telescope\u3c/em\u3e: A Parallax of the Central Star of the Planetary Nebula NGC 6853

    Get PDF
    We present an absolute parallax and relative proper motion for the central star of the planetary nebula NGC 6853 (the Dumbbell). We obtain these with astrometric data from the Fine Guidance Sensor 3, a white-light interferometer on the Hubble Space Telescope. Spectral classifications and VRIJHKT2M and DDO51 photometry of the stars making up the astrometric reference frame provide spectrophotometric estimates of their absolute parallaxes. Introducing these into our model as observations with error, we find πabs = 2.10 ± 0.48 mas for the DAO central star of NGC 6853. A weighted average with a previous ground-based USNO determination yields πabs = 2.40 ± 0.32. We assume that the extinction suffered by the reference stars nearest (in angular separation and distance) to the central star is the same as for the central star. Correcting for color differences, we find AV = 0.30 ± 0.06 for the central star, hence, an absolute magnitude MV = 5.48. A recent determination of the central star effective temperature aided in estimating the central star radius, R* = 0.055 ± 0.02 R⊙, a star that may be descending to the white dwarf cooling track

    Perception of Loudness Is Influenced by Emotion

    Get PDF
    Loudness perception is thought to be a modular system that is unaffected by other brain systems. We tested the hypothesis that loudness perception can be influenced by negative affect using a conditioning paradigm, where some auditory stimuli were paired with aversive experiences while others were not. We found that the same auditory stimulus was reported as being louder, more negative and fear-inducing when it was conditioned with an aversive experience, compared to when it was used as a control stimulus. This result provides support for an important role of emotion in auditory perception

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847

    Get PDF
    Aims. We constrain the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 CLASH cluster MACS J1206.2-0847, using the projected phase-space distribution of cluster galaxies in combination with gravitational lensing. Methods. We use an unprecedented data-set of â‰600 redshifts for cluster members, obtained as part of a VLT/VIMOS large program, to constrain the cluster mass profile over the radial range ~0-5 Mpc (0-2.5 virial radii) using the MAMPOSSt and Caustic methods. We then add external constraints from our previous gravitational lensing analysis. We invert the Jeans equation to obtain the velocity-anisotropy profiles of cluster members. With the mass-density and velocity-anisotropy profiles we then obtain the first determination of a cluster pseudo-phase-space density profile. Results. The kinematics and lensing determinations of the cluster mass profile are in excellent agreement. This is very well fitted by a NFW model with mass M200 = (1.4 ± 0.2) × 1015 M ⊙ and concentration c200 = 6 ± 1, only slightly higher than theoretical expectations. Other mass profile models also provide acceptable fits to our data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere) or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of the passive and star-forming cluster members are similar, close to isotropic near the center and increasingly radial outside. Passive cluster members follow extremely well the theoretical expectations for the pseudo-phase-space density profile and the relation between the slope of the mass-density profile and the velocity anisotropy. Star-forming cluster members show marginal deviations from theoretical expectations. Conclusions. This is the most accurate determination of a cluster mass profile out to a radius of 5 Mpc, and the only determination of the velocity-anisotropy and pseudo-phase-space density profiles of both passive and star-forming galaxies for an individual cluster. These profiles provide constraints on the dynamical history of the cluster and its galaxies. Prospects for extending this analysis to a larger cluster sample are discussed. © ESO, 2013
    corecore