129 research outputs found

    Diagnosing Illness Across Languages: The Role of Interpreters in Medical Discourse

    Get PDF
    Proceedings of the Twenty-Third Annual Meeting of the Berkeley Linguistics Society: General Session and Parasession on Pragmatics and Grammatical Structure (1997

    Survival of Northern Bobwhite Infected with Avian Pox

    Get PDF
    Avian pox is an enzootic disease among northern bobwhite (Colinus virginianus) in the southeastern United States, but occasionally it occurs as local or regional epizootics. Little information exists concerning survival of wild bobwhite infected with this disease. During the winters of 1985 and 1986, we compared survival of radio-tagged bobwhite with and without pox lesions. Pox lesions were considered wet or dry depending on field evaluations. The incidence of pox was greater in 1985 (x1=\u27 16.536, df= 1, P\u3c 0.005) than in 1986. Bobwhite with wet pox lesions weighed less than those with dry pox (t = 2.550, P = 0.014) or no pox (t = 2.393, P = 0.018). In 1985 6-week survivorship of bobwhite showing signs of wet pox was different compared to those with dry pox (Z = 1. 7 498, P = 0.0402) and no pox (Z = 2.9992, P = 0.0014). Survivorship of birds with dry pox and no pox was not different (Z = 0.6460, P = 0.2611. Bobwhite with wet pox in 1985 had 45.6 and 53.3% overall lower 6-week survival rates than birds with dry and no pox, respectively. No difference in survivorship existed between bobwhite with dry pox and those with no pox in 1986 (Z = 1.1727, P= 0.1210). No difference in predatory agents responsible for mortalities between birds with or without pox occurred (X2 = 0.8851, df= 2, P\u3e 0.05). All mortality of infected birds appeared to be caused by predation and not the disease itself. Implications of these data for inter- and intraspecific disease transmission are discussed

    A Methodology for Risk Assessment to Improve the Resilience and Sustainability of Critical Infrastructure with Case Studies from the United States Army

    Get PDF
    Reliable performance of energy and water infrastructure is central to the mission readiness of the United States Army. These systems are vulnerable to coordinated attacks from an adversary as well as disruption from natural events. The objectives of this work were to investigate Army installations in North America, identify best practices for improving the resilience and sustainability of critical energy and water infrastructure, and develop a framework and methodology for analyzing the resilience of an installation under varying outage scenarios. This work was accomplished using a multi-layered decision process to identify unique case studies from the 117 active-duty domestic Army installations. A framework for analyzing and assessing the resilience of an installation was then developed to help inform stakeholders. Metered energy and water data from buildings across Fort Benning, GA were curated to inform the modeling framework, including a discrete-event simulation of the supply and demand for energy and water on the installation using ProModel. This simulation was used to study the scale of solutions required to address outage events of varying frequency, duration, and magnitude, the combination of which is described as the severity of outages at a given site. This project helps develop a framework to inform how installations might meet Army Directive 2020-03, which states that installations must be able to sustain mission requirements for a minimum of 14 days after a disruption has occurred

    Direct Long-acting Antibodies: Updating the Language of RSV Prevention to Reflect the Evolution of mAbs

    Get PDF
    Background: The language of medicine is constantly evolving, typically to better describe a new understanding of disease, adjust to changing social sensibilities, or simply to reflect a new drug class or category. We address the need for an updated language around monoclonal antibodies, or “mAbs”—a widely used medical term, but one which is now too general to accurately reflect the range of mAb pharmaceuticals, their effects, and the intended patients. Methods: The question of “what should we call a monoclonal antibody immunisation against respiratory syncytial virus (RSV) to ensure accurate understanding of the product?” was the basis for a virtual advisory panel in May 2022. The panel was convened by Sanofi with the intention of reviewing appropriate language in terminology in the context of mAb-based prophylaxis for RSV. The panel comprised several global experts on RSV and vaccination, a trained linguist specializing in doctor-patient interactions and medical language, and several experts in marketing and communications. Results: We suggest the term “Direct Long-acting Antibody” (DLA) for a specific sub-class of mAbs for use in prevention of RSV disease in infants. This terminology should differentiate from other mAbs, which are generally not used as therapies in infants. Conclusions: This change will more accurately convey the specific mode of action of a mAb in infants, and how it could impact the prevention of communicable diseases: this class of mAbs is not an active treatment, but rather will offer direct and rapid protection lasting at least 5 months

    High-angle wave instability and emergent shoreline shapes : 2. Wave climate analysis and comparisons to nature

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): F04012, doi:10.1029/2005JF000423.Recent research has revealed that the plan view evolution of a coast due to gradients in alongshore sediment transport is highly dependant upon the angles at which waves approach the shore, giving rise to an instability in shoreline shape that can generate different types of naturally occurring coastal landforms, including capes, flying spits, and alongshore sand waves. This instability merely requires that alongshore sediment flux is maximized for a given deepwater wave angle, a maximum that occurs between 35° and 50° for several common alongshore sediment transport formulae. Here we introduce metrics that sum over records of wave data to quantify the long-term stability of wave climates and to investigate how wave climates change along a coast. For Long Point, a flying spit on the north shore of Lake Erie, Canada, wave climate metrics suggest that unstable waves have shaped the spit and, furthermore, that smaller-scale alongshore sand waves occur along the spit at the same locations where the wave climate becomes unstable. A shoreline aligned along the trend of the Carolina Capes, United States, would be dominated by high-angle waves; numerical simulations driven by a comparable wave climate develop a similarly shaped cuspate coast. Local wave climates along these simulated capes and the Carolina Capes show similar trends: Shoreline reorientation and shadowing from neighboring capes causes most of the coast to experience locally stable wave climates despite regional instability.This research was funded by the Andrew W. Mellon Foundation and NSF grants DEB-05-07987 and EAR-04-44792

    Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk

    Get PDF
    The majority of colon tumors are driven by aberrant Wnt signaling in intestinal stem cells, which mediates an efficient route toward initiating intestinal cancer. Natural lipophilic polyphenols and long-chain polyunsaturated fatty acids (PUFAs) generally suppress Wnt- and NF-κB- (nuclear factor-κ light-chain enhancer of activated B-cell) related pathways. However, the effects of these extrinsic agents on colonic leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5(+)) stem cells, the cells of origin of colon cancer, have not been documented to date. Therefore, we examined the effect of n-3 PUFA and polyphenol (curcumin) combination on Lgr5(+) stem cells during tumor initiation and progression in the colon compared with an n-6 PUFA-enriched control diet. Lgr5-EGFP-IRES-(creERT2) knock-in mice were fed diets containing n-6 PUFA (control), n-3 PUFA, n-6 PUFA+curcumin or n-3 PUFA+curcumin for 3 weeks, followed by 6 azoxymethane (AOM) injections, and terminated 17 weeks after the last injection. To further elucidate the effects of the dietary bioactives at the tumor initiation stage, Lgr5(+) stem cells were also assessed at 12 and 24 h post AOM injection. Only n-3 PUFA+curcumin feeding reduced nuclear β-catenin in aberrant crypt foci (by threefold) compared with control at the progression time point. n-3 PUFA+curcumin synergistically increased targeted apoptosis in DNA-damaged Lgr5(+) stem cells by 4.5-fold compared with control at 12 h and maximally reduced damaged Lgr5(+) stem cells at 24 h, down to the level observed in saline-treated mice. Finally, RNAseq analysis indicated that p53 signaling in Lgr5(+) stem cells from mice exposed to AOM was uniquely upregulated only following n-3 PUFA+curcumin cotreatment. These novel findings demonstrate that Lgr5(+) stem cells are uniquely responsive to external dietary cues following the induction of DNA damage, providing a therapeutic strategy for eliminating damaged Lgr5(+) stem cells to reduce colon cancer initiation

    Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements.

    Get PDF
    Background: Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated. Results: Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, Corella inflata and Ciona robusta. Cross-species analysis of regulatory elements suggests that trans-regulatory architecture is largely conserved between these highly divergent species. In contrast, cis-regulatory elements within this network exhibit distinct levels of conservation. In particular, while most of the regulatory elements we analyzed showed extensive rearrangements of functional binding sites, the enhancer for the cardiopharyngeal transcription factor FoxF is remarkably well-conserved. Even minor alterations in spacing between binding sites lead to loss of FoxF enhancer function, suggesting that bound trans-factors form position-dependent complexes. Conclusions: Our findings reveal heterogeneous levels of divergence across cardiopharyngeal cis-regulatory elements. These distinct levels of divergence presumably reflect constraints that are not clearly associated with gene function or position within the regulatory network. Thus, levels of cis-regulatory divergence or drift appear to be governed by distinct structural constraints that will be difficult to predict based on network architectur

    High-angle wave instability and emergent shoreline shapes : 1. Modeling of sand waves, flying spits, and capes

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): F04011, doi:10.1029/2005JF000422.Contrary to traditional findings, the deepwater angle of wave approach strongly affects plan view coastal evolution, giving rise to an antidiffusional “high wave angle” instability for sufficiently oblique deepwater waves (with angles between wave crests and the shoreline trend larger than the value that maximizes alongshore sediment transport, ∼45°). A one-contour-line numerical model shows that a predominance of high-angle waves can cause a shoreline to self-organize into regular, quasiperiodic shapes similar to those found along many natural coasts at scales ranging from kilometers to hundreds of kilometers. The numerical model has been updated from a previous version to include a formulation for the widening of an overly thin barrier by the process of barrier overwash, which is assumed to maintain a minimum barrier width. Systematic analysis shows that the wave climate determines the form of coastal response. For nearly symmetric wave climates (small net alongshore sediment transport), cuspate coasts develop that exhibit increasing relative cross-shore amplitude and pointier tips as the proportion of high-angle waves is increased. For asymmetrical wave climates, shoreline features migrate in the downdrift direction, either as subtle alongshore sand waves or as offshore-extending “flying spits,” depending on the proportion of high-angle waves. Numerical analyses further show that the rate that the alongshore scale of model features increases through merging follows a diffusional temporal scale over several orders of magnitude, a rate that is insensitive to the proportion of high-angle waves. The proportion of high-angle waves determines the offshore versus alongshore aspect ratio of self-organized shoreline undulations.This research was funded by the Andrew W. Mellon Foundation and NSF grants DEB-05-07987 and EAR-04-44792

    Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2

    Get PDF
    Dlx2, Lymphoid Enhancer Factor (Lef-1) and Msx2 transcription factors are required for several developmental processes. To understand the control of gene expression by these factors, chromatin immunoprecipitation (ChIP) assays identified Msx2 as a downstream target of Dlx2 and Lef-1. Dlx2 activates the Msx2 promoter in several cell lines and binds DNA as a monomer and dimer. A Lef-1 β-catenin-dependent isoform minimally activates the Msx2 promoter and a Lef-1 β-catenin-independent isoform is inactive, however co-expression of Dlx2 and both Lef-1 isoforms synergistically activate the Msx2 promoter. Co-immunoprecipitation and protein pull-down experiments demonstrate Lef-1 physically interacts with Dlx2. Deletion analyses of the Lef-1 protein reveal specific regions required for synergism with Dlx2. The Lef-1 β-catenin binding domain (βDB) is not required for its interaction with Dlx2. Msx2 can auto-regulate its promoter and repress Dlx2 activation. Msx2 repression of Dlx2 activation is dose-specific and both bind a common DNA-binding element. These transcriptional mechanisms correlate with the temporal and spatial expression of these factors and may provide a mechanism for the control of several developmental processes. We demonstrate new transcriptional activities for Dlx2, Msx2 and Lef-1 through protein interactions and identification of downstream targets
    corecore