24 research outputs found

    MoKCa database - mutations of kinases in cancer

    Get PDF
    Members of the protein kinase family are amongst the most commonly mutated genes in human cancer, and both mutated and activated protein kinases have proved to be tractable targets for the development of new anticancer therapies The MoKCa database (Mutations of Kinases in Cancer, http://strubiol.icr.ac.uk/extra/mokca) has been developed to structurally and functionally annotate, and where possible predict, the phenotypic consequences of mutations in protein kinases implicated in cancer. Somatic mutation data from tumours and tumour cell lines have been mapped onto the crystal structures of the affected protein domains. Positions of the mutated amino-acids are highlighted on a sequence-based domain pictogram, as well as a 3D-image of the protein structure, and in a molecular graphics package, integrated for interactive viewing. The data associated with each mutation is presented in the Web interface, along with expert annotation of the detailed molecular functional implications of the mutation. Proteins are linked to functional annotation resources and are annotated with structural and functional features such as domains and phosphorylation sites. MoKCa aims to provide assessments available from multiple sources and algorithms for each potential cancer-associated mutation, and present these together in a consistent and coherent fashion to facilitate authoritative annotation by cancer biologists and structural biologists, directly involved in the generation and analysis of new mutational data

    Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase

    Get PDF
    UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations

    Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification.

    Get PDF
    The study of protein phosphorylation is critical for the advancement of our understanding of cellular responses to external and internal stimuli. Phosphorylation, the addition of phosphate groups, most often occurs on serine, threonine, or tyrosine residues due to the action of protein kinases. This structural change causes the protein to become activated (or deactivated) and enables it in turn to initiate the phosphorylation of other proteins in a cascade, eventually causing cell-wide changes such as apoptosis, cell differentiation, and growth (among others). Cellular phosphoprotein pathway dysregulation by mutation or chromosomal instability can often give the cell a selective advantage and lead to cancer. Obviously the understanding of these systems is of huge importance to the field of oncology.This chapter aims to provide a "how to" manual for one such technology, the 96-well plate-based xMAP® platform from Luminex. The system utilizes antibody-bound free-floating magnetic spheres which can easily be removed from suspension via magnetization. There are 100 unique bead sets (moving up to 500 bead sets for the most recent system) identified by the ratio of two dyes coating the microsphere. Each bead set is conjugated to a specific antibody which allows targeted protein extraction from low-concentration lysate solution. Biotinylated secondary antibodies/streptavidin-R-phycoerythrin (SAPE) complexes provide the quantification mechanism for the phosphoprotein of interest

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data se

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set

    From protein sequences to 3D-structures and beyond: the example of the UniProt Knowledgebase

    Get PDF
    With the dramatic increase in the volume of experimental results in every domain of life sciences, assembling pertinent data and combining information from different fields has become a challenge. Information is dispersed over numerous specialized databases and is presented in many different formats. Rapid access to experiment-based information about well-characterized proteins helps predict the function of uncharacterized proteins identified by large-scale sequencing. In this context, universal knowledgebases play essential roles in providing access to data from complementary types of experiments and serving as hubs with cross-references to many specialized databases. This review outlines how the value of experimental data is optimized by combining high-quality protein sequences with complementary experimental results, including information derived from protein 3D-structures, using as an example the UniProt knowledgebase (UniProtKB) and the tools and links provided on its website (http://www.uniprot.org/). It also evokes precautions that are necessary for successful predictions and extrapolations

    The Annotation of Both Human and Mouse Kinomes in UniProtKB/Swiss-Prot: One Small Step in Manual Annotation, One Giant Leap for Full Comprehension of Genomes*

    No full text
    Biomolecule phosphorylation by protein kinases is a fundamental cell signaling process in all living cells. Following the comprehensive cataloguing of the protein kinase complement of the human genome (Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–1934), this review will detail the state-of-the-art human and mouse kinase proteomes as provided in the UniProtKB/Swiss-Prot protein knowledgebase. The sequences of the 480 classical and up to 24 atypical protein kinases now believed to exist in the human genome and 484 classical and up to 24 atypical kinases within the mouse genome have been reviewed and, where necessary, revised. Extensive annotation has been added to each entry. In an era when a wealth of new databases is emerging on the Internet, UniProtKB/Swiss-Prot makes available to the scientific community the most up-to-date and in-depth annotation of these proteins with access to additional external resources linked from within each entry. Incorrect sequence annotations resulting from errors and artifacts have been eliminated. Each entry will be constantly reviewed and updated as new information becomes available with the orthologous enzymes in related species being annotated in a parallel effort and complete kinomes being completed as sequences become available. This ensures that the mammalian kinomes available from UniProtKB/Swiss-Prot are of a consistently high standard with each separate entry acting both as a valuable information resource and a central portal to a wealth of further detail via extensive cross-referencing

    Pathophysiologie de l'hypertrophie ventriculaire gauche au cours de l'hypertension artérielle

    No full text
    The role of left ventricular hypertrophy as an independent risk factor for subsequent cardio-vascular events is well established, therefore the authors, in this brief review, describe the endocrine function of the heart and the role played by various factors, including hormones, in the development of cardiac remodeling during the course of hypertension. They then outline the present state of our knowledge concerning transmembrane signaling in the cardiomyocyte in response to an activation of specific receptors for vasoactive hormones of the renin-angiotensin II-aldosterone system

    MAP kinase mediates epidermal growth factor- and phorbol ester-induced prostacyclin formation in cardiomyocytes

    No full text
    We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway
    corecore