438 research outputs found
Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source
Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part
Ballistic matter waves with angular momentum: Exact solutions and applications
An alternative description of quantum scattering processes rests on
inhomogeneous terms amended to the Schroedinger equation. We detail the
structure of sources that give rise to multipole scattering waves of definite
angular momentum, and introduce pointlike multipole sources as their limiting
case. Partial wave theory is recovered for freely propagating particles. We
obtain novel results for ballistic scattering in an external uniform force
field, where we provide analytical solutions for both the scattering waves and
the integrated particle flux. Our theory directly applies to p-wave
photodetachment in an electric field. Furthermore, illustrating the effects of
extended sources, we predict some properties of vortex-bearing atom laser beams
outcoupled from a rotating Bose-Einstein condensate under the influence of
gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and
semiclassical theor
Validation of MIPAS-ENVISAT NO2 operational data
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument was launched aboard the environmental satellite ENVISAT into its sun-synchronous orbit on 1 March 2002. The short-lived species NO<sub>2</sub> is one of the key target products of MIPAS that are operationally retrieved from limb emission spectra measured in the stratosphere and mesosphere. Within the MIPAS validation activities, a large number of independent observations from balloons, satellites and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational NO<sub>2</sub> data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. Comparisons between MIPAS and balloon-borne observations carried out in 2002 and 2003 in the Arctic, at mid-latitudes, and in the tropics show a very good agreement below 40 km altitude with a mean deviation of roughly 3%, virtually without any significant bias. The comparison to ACE satellite observations exhibits only a small negative bias of MIPAS which appears not to be significant. The independent satellite instruments HALOE, SAGE II, and POAM III confirm in common for the spring-summer time period a negative bias of MIPAS in the Arctic and a positive bias in the Antarctic middle and upper stratosphere exceeding frequently the combined systematic error limits. In contrast to the ESA operational processor, the IMK/IAA retrieval code allows accurate inference of NO<sub>2</sub> volume mixing ratios under consideration of all important non-LTE processes. Large differences between both retrieval results appear especially at higher altitudes, above about 50 to 55 km. These differences might be explained at least partly by non-LTE under polar winter conditions but not at mid-latitudes. Below this altitude region mean differences between both processors remain within 5% (during night) and up to 10% (during day) under undisturbed (September 2002) conditions and up to 40% under perturbed polar night conditions (February and March 2004). The intercomparison of ground-based NDACC observations shows no significant bias between the FTIR measurements in Kiruna (68° N) and MIPAS in summer 2003 but larger deviations in autumn and winter. The mean deviation over the whole comparison period remains within 10%. A mean negative bias of 15% for MIPAS daytime and 8% for nighttime observations has been determined for UV-vis comparisons over Harestua (60° N). Results of a pole-to-pole comparison of ground-based DOAS/UV-visible sunrise and MIPAS mid-morning column data has shown that the mean agreement in 2003 falls within the accuracy limit of the comparison method. Altogether, it can be indicated that MIPAS NO<sub>2</sub> profiles yield valuable information on the vertical distribution of NO<sub>2</sub> in the lower and middle stratosphere (below about 45 km) during day and night with an overall accuracy of about 10–20% and a precision of typically 5–15% such that the data are useful for scientific studies. In cases where extremely high NO<sub>2</sub> occurs in the mesosphere (polar winter) retrieval results in the lower and middle stratosphere are less accurate than under undisturbed atmospheric conditions
Phytoplankton functional types from Space.
The concept of phytoplankton functional types has emerged as a useful approach to
classifying phytoplankton. It finds many applications in addressing some serious
contemporary issues facing science and society. Its use is not without challenges,
however. As noted earlier, there is no universally-accepted set of functional types,
and the types used have to be carefully selected to suit the particular problem being
addressed. It is important that the sum total of all functional types matches all
phytoplankton under consideration. For example, if in a biogeochemical study,
we classify phytoplankton as silicifiers, calcifiers, DMS-producers and nitrogen fix-
ers, then there is danger that the study may neglect phytoplankton that do not
contribute in any significant way to those functions, but may nevertheless be a
significant contributor to, say primary production. Such considerations often lead
to the adoption of a category of “other phytoplankton” in models, with no clear
defining traits assigned them, but that are nevertheless necessary to close budgets
on phytoplankton processes. Since this group is a collection of all phytoplankton
that defy classification according to a set of traits, it is difficult to model their physi-
ological processes. Our understanding of the diverse functions of phytoplankton is
still growing, and as we recognize more functions, there will be a need to balance the
desire to incorporate the increasing number of functional types in models against
observational challenges of identifying and mapping them adequately. Modelling
approaches to dealing with increasing functional diversity have been proposed,
for example, using the complex adaptive systems theory and system of infinite
diversity, as in the work of Bruggemann and Kooijman (2007). But it is unlikely that
remote-sensing approaches might be able to deal with anything but a few prominent
functional types. As long as these challenges are explicitly addressed, the functional-
type concept should continue to fill a real need to capture, in an economic fashion,
the diversity in phytoplankton, and remote sensing should continue to be a useful
tool to map them.
Remote sensing of phytoplankton functional types is an emerging field, whose
potential is not fully realised, nor its limitations clearly established. In this report,
we provide an overview of progress to date, examine the advantages and limitations
of various methods, and outline suggestions for further development. The overview
provided in this chapter is intended to set the stage for detailed considerations of
remote-sensing applications in later chapters.
In the next chapter, we examine various in situ methods that exist for observing
phytoplankton functional types, and how they relate to remote-sensing techniques.
In the subsequent chapters, we review the theoretical and empirical bases for the
existing and emerging remote-sensing approaches; assess knowledge about the
limitations, assumptions, and likely accuracy or predictive skill of the approaches;
provide some preliminary comparative analyses; and look towards future prospects
with respect to algorithm development, validation studies, and new satellite mis-
sions
Superhydrophobic paper in the development of disposable labware and lab-on-paper devices
Traditionally in superhydrophobic surfaces history, the focus has frequently settled on the use of complex processing methodologies using nonbiodegradable and costly materials. In light of recent events on lab-on-paper emergence, there are now some efforts for the production of superhydrophobic paper but still with little development and confined to the fabrication of flat devices. This work gives a new look at the range of possible applications of bioinspired superhydrophobic paper-based substrates, obtained using a straightforward surface modification with poly(hydroxybutyrate). As an end-of-proof of the possibility to create lab-on-chip portable devices, the patterning of superhydrophobic paper with different wettable shapes is shown with low-cost approaches. Furthermore, we suggest the use of superhydrophobic paper as an extremely low-cost material to design essential nonplanar lab apparatus, including reservoirs for liquid storage and manipulation, funnels, tips for pipettes, or accordion-shaped substrates for liquid transport or mixing. Such devices take the advantage of the self-cleaning and extremely water resistance properties of the surfaces as well as the actions that may be done with paper such as cut, glue, write, fold, warp, or burn. The obtained substrates showed lower propensity to adsorb proteins than the original paper, kept superhydrophobic character upon ethylene oxide sterilization and are disposable, suggesting that the developing devices could be especially adequate for use in contact with biological and hazardous materials
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.
The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630,
2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric
quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications
Recommended from our members
Inhibition of DHCR24 activates LXRα to ameliorate hepatic steatosis and inflammation
Liver X receptor (LXR) agonism has theoretical potential for treating NAFLD/NASH, but synthetic agonists induce hyperlipidemia in preclinical models. Desmosterol, which is converted by & UDelta;24-dehydrocholesterol reductase (DHCR24) into cholesterol, is a potent endogenous LXR agonist with anti-inflammatory properties. We aimed to investigate the effects of DHCR24 inhibition on NAFLD/NASH development. Here, by using APOE*3-Leiden. CETP mice, a well-established translational model that develops diet-induced human-like NAFLD/NASH characteristics, we report that SH42, a published DHCR24 inhibitor, markedly increases desmosterol levels in liver and plasma, reduces hepatic lipid content and the steatosis score, and decreases plasma fatty acid and cholesteryl ester concentrations. Flow cytometry showed that SH42 decreases liver inflammation by preventing Kupffer cell activation and monocyte infiltration. LXRa deficiency completely abolishes these beneficial effects of SH42. Together, the inhibition of DHCR24 by SH42 prevents diet-induced hepatic steatosis and inflammation in a strictly LXRa-dependent manner without causing hyperlipidemia. Finally, we also showed that SH42 treatment decreased liver collagen content and plasma alanine transaminase levels in an established NAFLD model. In conclusion, we anticipate that pharmacological DHCR24 inhibition may represent a novel therapeutic strategy for treatment of NAFLD/NASH.Metabolic health: pathophysiological trajectories and therap
Dwell-time distributions in quantum mechanics
Some fundamental and formal aspects of the quantum dwell time are reviewed,
examples for free motion and scattering off a potential barrier are provided,
as well as extensions of the concept. We also examine the connection between
the dwell time of a quantum particle in a region of space and flux-flux
correlations at the boundaries, as well as operational approaches and
approximations to measure the flux-flux correlation function and thus the
second moment of the dwell time, which is shown to be characteristically
quantum, and larger than the corresponding classical moment even for freely
moving particles.Comment: To appear in "Time in Quantum Mechanics, Vol. 2", Springer 2009, ed.
by J. G. Muga, A. Ruschhaupt and A. del Camp
- …