249 research outputs found

    Differential Form of the Collision Integral for a Relativistic Plasma

    Full text link
    The differential formulation of the Landau-Fokker-Planck collision integral is developed for the case of relativistic electromagnetic interactions.Comment: Plain TeX, 5 page

    Win for your kin: Neural responses to personal and vicarious rewards when mothers win for their adolescent children

    Get PDF
    Mother-child relationships change considerably in adolescence, but it is not yet understood how mothers experience vicarious rewards for their adolescent children. In the current study, we investigated neural responses of twenty mothers winning and losing money for their best friend and for their adolescent child in a gambling task. During the task, functional neuroimaging data were acquired. We examined the activation patterns when playing for or winning for self, adolescent children and friends in four a-priori selected ROIs (nucleus accumbens, dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Behaviorally, mothers indicated that they experienced most enjoyment when they gained money for their children and that their children deserved to win more, relative to friends and self. At the neural level, nucleus accumbens activity was stronger when winning versus losing. This pattern was not only found when playing for self, but also for friends and children, possibly reflecting the rewarding value of vicarious prosocial gains. In addition, dorsomedial prefrontal cortex, precuneus, and temporo-parietal junction were more active when receiving outcomes for children and friends compared to self, possibly reflecting increased recruitment of mentalizing processes. Interestingly, activity in this network was stronger for mothers who indicated that their children and friends deserved to win more. These findings provide initial evidence that vicarious rewards for one’s children are processed similarly as rewards for self, and that activation in social brain regions are related to social closeness.Pathways through Adolescenc

    Atomic-scale representation and statistical learning of tensorial properties

    Full text link
    This chapter discusses the importance of incorporating three-dimensional symmetries in the context of statistical learning models geared towards the interpolation of the tensorial properties of atomic-scale structures. We focus on Gaussian process regression, and in particular on the construction of structural representations, and the associated kernel functions, that are endowed with the geometric covariance properties compatible with those of the learning targets. We summarize the general formulation of such a symmetry-adapted Gaussian process regression model, and how it can be implemented based on a scheme that generalizes the popular smooth overlap of atomic positions representation. We give examples of the performance of this framework when learning the polarizability and the ground-state electron density of a molecule

    Variational determination of the two-electron reduced density matrix within the doubly occupied configuration interaction scheme: An extension to the study of open-shell systems

    Get PDF
    This work proposes to describe open-shell molecules or radicals using the framework of the doubly occupied configuration interaction (DOCI) treatments, so far limited to closed-shell system studies. The proposal is based on considering molecular systems in singlet states generated by adding extra hydrogen atoms located at infinite distance from the target radical system. The energy of this radical is obtained by subtracting the energies of the dissociated hydrogen atoms from that provided by the two-electron reduced density matrix corresponding to the singlet state system in the DOCI space, which is variationally calculated by imposing a set of N-representability conditions. This method is numerically assessed by describing potential energy curves and reduced density matrices in selected ionic and neutral open-shell systems in the doublet spin symmetry ground state.Fil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Torre, Alicia. Universidad del País Vasco; EspañaFil: Lain, Luis. Universidad del País Vasco; EspañaFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ríos, Elías Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Machine-learning of atomic-scale properties based on physical principles

    Full text link
    We briefly summarize the kernel regression approach, as used recently in materials modelling, to fitting functions, particularly potential energy surfaces, and highlight how the linear algebra framework can be used to both predict and train from linear functionals of the potential energy, such as the total energy and atomic forces. We then give a detailed account of the Smooth Overlap of Atomic Positions (SOAP) representation and kernel, showing how it arises from an abstract representation of smooth atomic densities, and how it is related to several popular density-based representations of atomic structure. We also discuss recent generalisations that allow fine control of correlations between different atomic species, prediction and fitting of tensorial properties, and also how to construct structural kernels---applicable to comparing entire molecules or periodic systems---that go beyond an additive combination of local environments

    FDG–PET. A possible prognostic factor in head and neck cancer

    Get PDF
    Previous studies have shown that high uptake of 18F-fluoro-2-deoxy-glucose in head and neck cancer, as determined by the standardized uptake value on positron emission tomography scan, was associated with poor survival. The aim of this study was to confirm the association and to establish whether a high standardized uptake value had prognostic significance. Seventy-three consecutive patients with newly diagnosed squamous cell carcinoma of the head and neck underwent a positron emission tomography study before treatment. Age, gender, performance status tumour grade, stage, maximal tumour diameter and standardized uptake value were analyzed for their possible association with survival. The median standardized uptake value for all primary tumours was 7.16 (90% range 2.30 to 18.60). In univariate survival analysis the cumulative survival was decreased as the stage, tumour diameter and standardized uptake value increased. An standardized uptake value of 10 was taken as a cut-off for high and low uptake tumours. When these two groups were compared, an standardized uptake value >10 predicted for significantly worse outcome (P=0.003). Multivariate analysis demonstrated that an standardized uptake value >10 provided prognostic information independent of the tumour stage and diameter (P=0.002). We conclude that high FDG uptake (standardized uptake value>10) on positron emission tomography is an important marker for poor outcome in primary squamous cell carcinoma of the head and neck. Standardized uptake value may be useful in distinguishing those tumours with a more aggressive biological nature and hence identifying patients that require intensive treatment protocols including hyperfractionated radiotherapy and/or chemotherapy

    Impact of combined 18F-FDG PET/CT in head and neck tumours

    Get PDF
    To compare the interobserver agreement and degree of confidence in anatomical localisation of lesions using 2-[fluorine-18]fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET alone in patients with head and neck tumours. A prospective study of 24 patients (16 male, eight female, median age 59 years) with head and neck tumours was undertaken. 18F-FDG PET/CT was performed for staging purposes. 2D images were acquired over the head and neck area using a GE Discovery LS™ PET/CT scanner. 18F-FDG PET images were interpreted by three independent observers. The observers were asked to localise abnormal 18F-FDG activity to an anatomical territory and score the degree of confidence in localisation on a scale from 1 to 3 (1=exact region unknown; 2=probable; 3=definite). For all 18F-FDG-avid lesions, standardised uptake values (SUVs) were also calculated. After 3 weeks, the same exercise was carried out using 18F-FDG PET/CT images, where CT and fused volume data were made available to observers. The degree of interobserver agreement was measured in both instances. A total of six primary lesions with abnormal 18F-FDG uptake (SUV range 7.2–22) were identified on 18F-FDG PET alone and on 18F-FDG PET/CT. In all, 15 nonprimary tumour sites were identified with 18F-FDG PET only (SUV range 4.5–11.7), while 17 were identified on 18F-FDG PET/CT. Using 18F-FDG PET only, correct localisation was documented in three of six primary lesions, while 18F-FDG PET/CT correctly identified all primary sites. In nonprimary tumour sites, 18F-FDG PET/CT improved the degree of confidence in anatomical localisation by 51%. Interobserver agreement in assigning primary and nonprimary lesions to anatomical territories was moderate using 18F-FDG PET alone (kappa coefficients of 0.45 and 0.54, respectively), but almost perfect with 18F-FDG PET/CT (kappa coefficients of 0.90 and 0.93, respectively). We conclude that 18F-FDG PET/CT significantly increases interobserver agreement and confidence in disease localisation of 18F-FDG-avid lesions in patients with head and neck cancers

    EUROfusion-theory and advanced simulation coordination (E-TASC): programme and the role of high performance computing

    Get PDF
    The paper is a written summary of an overview oral presentation given at the 1st Spanish Fusion HPC Workshop that took place on the 27th November 2020 as an online event. Given that over the next few years ITER will move to its operation phase and the European-DEMO design will be significantly advanced, the EUROfusion consortium has initiated a coordination effort in theory and advanced simulation to address some of the challenges of the fusion research in Horizon EUROPE (2021-2027), i.e. the next EU Framework Programme for Research and Technological Development. This initiative has been called E-TASC that stands for EUROfusion-Theory and Advanced Simulation Coordination. The general and guiding principles of E-TASC are summarized in the paper. In addition, an overview of the scientific results obtained in a pilot phase (2019-2020) of E-TASC are provided while highlighting the importance of the required progress in computational methods and HPC techniques. In the initial phase, five pilot theory and simulation tasks were initiated: 1. Towards a validated predictive capability of the L-H transition and pedestal physics; 2. Electron runaway in tokamak disruptions in the presence of massive material injection; 3. Fast code for the calculation of neoclassical toroidal viscosity in stellarators and tokamaks; 4. Development of a neutral gas kinetics modular code; 5. European edge and boundary code for reactor-relevant devices. In this paper we report on recent progress made by each of these projects.</p

    EUROfusion-theory and advanced simulation coordination (E-TASC) : programme and the role of high performance computing

    Get PDF
    This paper is a written summary of an overview oral presentation given at the 1st Spanish Fusion High Performance Computer (HPC) Workshop that took place on the 27 November 2020 as an online event. Given that over the next few years ITER24 will move to its operation phase and the European-DEMO design will be significantly advanced, the EUROfusion consortium has initiated a coordination effort in theory and advanced simulation to address some of the challenges of the fusion research in Horizon EUROPE (2021-2027), i.e. the next EU Framework Programme for Research and Technological Development. This initiative has been called E-TASC, which stands for EUROfusion-Theory and Advanced Simulation Coordination. The general and guiding principles of E-TASC are summarized in this paper. In addition, an overview of the scientific results obtained in the pilot phase (2019-2020) of E-TASC are provided while highlighting the importance of the required progress in computational methods and HPC techniques. In the initial phase, five pilot theory and simulation tasks were initiated: towards a validated predictive capability of the low to high transition and pedestal physics; runaway electrons in tokamak disruptions in the presence of massive material injection; fast code for the calculation of neoclassical toroidal viscosity in stellarators and tokamaks; development of a neutral gas kinetics modular code; European edge and boundary code for reactor-relevant devices. In this paper, we report on recent progress made by each of these projects.Peer reviewe

    Development and Validation of a Tokamak Skin Effect Transformer model

    Full text link
    A control oriented, lumped parameter model for the tokamak transformer including the slow flux penetration in the plasma (skin effect transformer model) is presented. The model does not require detailed or explicit information about plasma profiles or geometry. Instead, this information is lumped in system variables, parameters and inputs. The model has an exact mathematical structure built from energy and flux conservation theorems, predicting the evolution and non linear interaction of the plasma current and internal inductance as functions of the primary coil currents, plasma resistance, non-inductive current drive and the loop voltage at a specific location inside the plasma (equilibrium loop voltage). Loop voltage profile in the plasma is substituted by a three-point discretization, and ordinary differential equations are used to predict the equilibrium loop voltage as function of the boundary and resistive loop voltages. This provides a model for equilibrium loop voltage evolution, which is reminiscent of the skin effect. The order and parameters of this differential equation are determined empirically using system identification techniques. Fast plasma current modulation experiments with Random Binary Signals (RBS) have been conducted in the TCV tokamak to generate the required data for the analysis. Plasma current was modulated in Ohmic conditions between 200kA and 300kA with 30ms rise time, several times faster than its time constant L/R\approx200ms. The model explains the most salient features of the plasma current transients without requiring detailed or explicit information about resistivity profiles. This proves that lumped parameter modeling approach can be used to predict the time evolution of bulk plasma properties such as plasma inductance or current with reasonable accuracy; at least in Ohmic conditions without external heating and current drive sources
    corecore