71 research outputs found
Compiling ER Specifications into Declarative Programs
This paper proposes an environment to support high-level database programming
in a declarative programming language. In order to ensure safe database
updates, all access and update operations related to the database are generated
from high-level descriptions in the entity- relationship (ER) model. We propose
a representation of ER diagrams in the declarative language Curry so that they
can be constructed by various tools and then translated into this
representation. Furthermore, we have implemented a compiler from this
representation into a Curry program that provides access and update operations
based on a high-level API for database programming.Comment: Paper presented at the 17th Workshop on Logic-based Methods in
Programming Environments (WLPE2007
Implementing Functional Logic Programs by Translation into Purely Functional Programs
This work examines a transformation scheme from functional logic programs to purely functional programs both formally and experimentally
Optimal UAV Hangar Locations for Emergency Services Considering Restricted Areas
With unmanned aerial vehicle(s) (UAV), swift responses to urgent needs (such as search and rescue missions or medical deliveries) can be realized. Simultaneously, legislators are establishing so-called geographical zones, which restrict UAV operations to mitigate air and ground risks to third parties. These geographical zones serve particular safety interests but they may also hinder the efficient usage of UAVs in time-critical missions with range-limiting battery capacities. In this study, we address a facility location problem for up to two UAV hangars and combine it with a routing problem of a standard UAV mission to consider geographical zones as restricted areas, battery constraints, and the impact of wind to increase the robustness of the solution. To this end, water rescue missions are used exemplary, for which positive and negative location factors for UAV hangars and areas of increased drowning risk as demand points are derived from open-source georeferenced data. Optimum UAV mission trajectories are computed with an A* algorithm, considering five different restriction scenarios. As this pathfinding is very time-consuming, binary occupancy grids and image-processing algorithms accelerate the computation by identifying either entirely inaccessible or restriction-free connections beforehand. For the optimum UAV hangar locations, we maximize accessibility while minimizing the service times to the hotspots, resulting in a decrease from the average service time of 570.4 s for all facility candidates to 351.1 s for one and 287.2 s for two optimum UAV hangar locations
Structure and Properties of Traces for Functional Programs
The tracer Hat records in a detailed trace the computation of a program written in the lazy functional language Haskell. The trace can then be viewed in various ways to support program comprehension and debugging. The trace was named the augmented redex trail. Its structure was inspired by standard graph rewriting implementations of functional languages. Here we describe a model of the trace that captures its essential properties and allows formal reasoning. The trace is a graph constructed by graph rewriting but goes beyond simple term graphs. Although the trace is a graph whose structure is independent of any rewriting strategy, we define the trace inductively, thus giving us a powerful method for proving its properties
Non-linear Pattern Matching with Backtracking for Non-free Data Types
Non-free data types are data types whose data have no canonical forms. For
example, multisets are non-free data types because the multiset has
two other equivalent but literally different forms and .
Pattern matching is known to provide a handy tool set to treat such data types.
Although many studies on pattern matching and implementations for practical
programming languages have been proposed so far, we observe that none of these
studies satisfy all the criteria of practical pattern matching, which are as
follows: i) efficiency of the backtracking algorithm for non-linear patterns,
ii) extensibility of matching process, and iii) polymorphism in patterns.
This paper aims to design a new pattern-matching-oriented programming
language that satisfies all the above three criteria. The proposed language
features clean Scheme-like syntax and efficient and extensible pattern matching
semantics. This programming language is especially useful for the processing of
complex non-free data types that not only include multisets and sets but also
graphs and symbolic mathematical expressions. We discuss the importance of our
criteria of practical pattern matching and how our language design naturally
arises from the criteria. The proposed language has been already implemented
and open-sourced as the Egison programming language
From Boolean Equalities to Constraints
Although functional as well as logic languages use equality to discriminate between logically different cases, the operational meaning of equality is different in such languages. Functional languages reduce equational expressions to their Boolean values, True or False, logic languages use unification to check the validity only and fail otherwise. Consequently, the language Curry, which amalgamates functional and logic programming features, offers two kinds of equational expressions so that the programmer has to distinguish between these uses. We show that this distinction can be avoided by providing an analysis and transformation method that automatically selects the appropriate operation. Without this distinction in source programs, the language design can be simplified and the execution of programs can be optimized. As a consequence, we show that one kind of equational expressions is sufficient and unification is nothing else than an optimization of Boolean equality
Combining Static and Dynamic Contract Checking for Curry
Static type systems are usually not sufficient to express all requirements on
function calls. Hence, contracts with pre- and postconditions can be used to
express more complex constraints on operations. Contracts can be checked at run
time to ensure that operations are only invoked with reasonable arguments and
return intended results. Although such dynamic contract checking provides more
reliable program execution, it requires execution time and could lead to
program crashes that might be detected with more advanced methods at compile
time. To improve this situation for declarative languages, we present an
approach to combine static and dynamic contract checking for the functional
logic language Curry. Based on a formal model of contract checking for
functional logic programming, we propose an automatic method to verify
contracts at compile time. If a contract is successfully verified, dynamic
checking of it can be omitted. This method decreases execution time without
degrading reliable program execution. In the best case, when all contracts are
statically verified, it provides trust in the software since crashes due to
contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Delta Debugging Type Errors with a Blackbox Compiler
Debugging type errors is a necessary process that programmers, both novices and experts alike, face when using statically typed functional programming languages. All compilers often report the location of a type error inaccurately. This problem has been a subject of research for over thirty years. We present a new method for locating type errors: We apply the Isolating Delta Debugging algorithm coupled with a blackbox compiler. We evaluate our implementation for Haskell by comparing it with the output of the Glasgow Haskell Compiler; overall we obtain positive results in favour of our method of type error debugging
Lightweight Computation Tree Tracing for Lazy Functional Languages
A computation tree of a program execution describes computations of functions and their dependencies. A computation tree describes how a program works and is at the heart of algorithmic debugging. To generate a computation tree, existing algorithmic debuggers either use a complex implementation or yield a less informative approximation. We present a method for lazy functional languages that requires only a simple tracing library to generate a detailed computation tree. With our algorithmic debugger a programmer can debug any Haskell program by only importing our library and annotating suspected functions
- …