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From Boolean Equalities to Constraints?
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1 Computer Science Dept., Portland State University, Oregon, U.S.A.
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2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
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Abstract. Although functional as well as logic languages use equality
to discriminate between logically different cases, the operational mean-
ing of equality is different in such languages. Functional languages re-
duce equational expressions to their Boolean values, True or False, logic
languages use unification to check the validity only and fail otherwise.
Consequently, the language Curry, which amalgamates functional and
logic programming features, offers two kinds of equational expressions
so that the programmer has to distinguish between these uses. We show
that this distinction can be avoided by providing an analysis and trans-
formation method that automatically selects the appropriate operation.
Without this distinction in source programs, the language design can be
simplified and the execution of programs can be optimized. As a conse-
quence, we show that one kind of equational expressions is sufficient and
unification is nothing else than an optimization of Boolean equality.

1 Motivation

Functional as well as logic programming languages are based on the common idea
to specify computational problems in a high-level and descriptive manner. How-
ever, the computational entities and, thus, the programming styles are different.
This can be seen in a prominent feature of such languages: the discrimination
between logically different cases of a given problem. Functional (as well as im-
perative) languages use Boolean equations for this purpose, i.e., an equational
expression is reduced to either True or False and, depending on the computed
result, a different computation path is selected. A typical example is the fac-
torial function where the base case is distinguished from the recursive case by
comparing the argument with 0:1

fac n = if n==0 then 1

else n * fac (n-1)

On the other hand, logic languages, like Prolog, use separate rules for different
cases where (equational) constraints restrict the applicability of the rules. For

? This material is based in part upon work supported by the National Science Foun-
dation under Grant No. 1317249.

1 We use the syntax of Haskell [24] for functional programs.



instance, the following Prolog program defines the concatenation relation be-
tween three lists (where we do not use patterns in left-hand sides to make the
equational constraints explicit):

append(X,Y,Z) :- X=[], Y=Z.

append(X,Y,Z) :- X=[E|T], Z=[E|U], append(T,Y,U).

The equality symbol “=” used in this program is different from the Boolean
equality “==” above. For instance, in the first rule it is not intended to evaluate
X=[] to True or False, but this equality must hold to proceed with this rule,
i.e., it is a constraint for subsequent evaluation steps. As a consequence, it is
not necessary to fully evaluate equational expressions but one can continue a
computation even with partial knowledge, as long as the constraint is ensured
to hold. For instance, if we want to ensure that a list L ends with the element 0,
we can write

append(_,[0],L)

which is solvable even if the values of the list elements are not known. Thus, if
L=[A,B,C] is a list of three variables, then the literal above is solved by binding
C to 0 but leaving all other list elements unspecified. Operationally, this is done
by unification [27] instead of evaluation to Boolean values.

Functional logic languages attempt to combine the most important features
of functional and logic programming in a single language (see [5, 18] for recent
surveys). In particular, the functional logic language Curry [21] extends Haskell
by common features of logic programming, i.e., non-determinism, free variables,
and equational constraints. Due to its roots in functional and logic program-
ming, Curry provides two kinds of equalities: Boolean equality (“==”) as in
functional programming and equational constraints (“=:=”) as in logic program-
ming. The motivation for this decision is to support nested case distinctions,
like in functional programming, as well as rule-oriented programming with par-
tial information, like in logic programming. Although one might argue that it
is always possible to guess values for unknowns, so that one kind of equality
is sufficient, an important insight of logic programming is that unification can
restrict the search space by binding variables instead of guessing values [27]. For
instance, if X and Y are Boolean variables, the equational constraint “X=Y” can
be solved by simply binding X to Y instead of enumerating appropriate values
for X and Y.

Although the distinction between these two kinds of equalities is present in
Curry from its early design [15], it also causes some complications. A program-
mer might not always easily understand which equality should be chosen in a
particular situation. Moreover, the distinction between solving and evaluating
equalities is also present in the type system, i.e., “==” has the result type Bool

whereas “=:=” has the result type Success (indicating the type of constraints).
As a consequence, various standard (combinator) functions on Booleans need
also be duplicated for the type Success.

In order to improve this situation, we argue in this paper that one kind of
equality, namely Boolean equality, is sufficient for the programmer. This will be
justified by an automatic method to transform Boolean equalities into constraint



equalities, if it is appropriate. Hence, we automatically obtain the nice features
of unification, i.e., reduction of the search space. For this purpose, we present
a program analysis and transformation method that automatically selects the
appropriate kind of equality. This leads to a simpler language design without
sacrificing program efficiency.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry which
are necessary to understand the contents of this paper. More details can be found
in recent surveys on functional logic programming [5, 18] and in the language
report [21].

Curry is a declarative multi-paradigm language combining in a seamless way
features from functional, logic, and concurrent programming (concurrency is
irrelevant as our work goes, hence it is ignored in this paper). The syntax of
Curry is close to Haskell [24], i.e., type variables and names of defined operations
usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. α→ β denotes the type of all functions mapping
elements of type α into elements of type β (where β can also be a functional
type, i.e., functional types are “curried”), and the application of an operation
f to an argument e is denoted by juxtaposition (“f e”). In addition to Haskell,
Curry allows free (logic) variables in conditions and right-hand sides of rules and
expressions evaluated by an interpreter.

A Curry program consists in the definition of functions or operations and the
data types on which the functions operate. Functions are defined by (conditional)
equations and are evaluated lazily. Function calls with free variables are evalu-
ated by a possibly non-deterministic instantiation of demanded arguments which
corresponds to narrowing [28, 25]. Curry narrows with possibly non-most-general
unifiers to ensure the optimality of computations [4].

Example 1. We present the above features in a program chosen for its simplicity
and brevity, rather than its power. The program defines the data type of Boolean
values and polymorphic lists and operations to concatenate two lists and compute
the last element of a list:2

data Bool = True | False

data List a = [] | a : List a

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a

last xs | _ ++ [x] =:= xs = x

2 Note that Curry requires the explicit declaration of free variables, as x in the rule of
last, to ensure checkable redundancy, but we omit them in this paper for the sake
of simplicity.



The data type declarations define True and False as Boolean values and []

(empty list) and : (non-empty list) as the constructors for polymorphic lists
(a is a type variable ranging over all types and the type “List a” is written
as [a] for conformity with Haskell). The (optional) type declaration (“::”) of
the operation “++” specifies that “++” takes two lists as input and produces an
output list, where all list elements are of the same (unspecified) type. Since “++”
can be called with free variables in arguments, the equation “- ++ [x] =:= xs”
in the condition of last is solved by instantiating the anonymous free variable -
to the list xs without the last argument, i.e., the only solution to this equation
satisfies that x is the last element of xs.

The (optional) condition of a program rule is typically a conjunction of con-
straints. Each Curry system provides at least equational constraints of the form
e1 =:= e2 which are satisfiable if both sides e1 and e2 are reducible to unifiable
data terms.

In order to use equations to discriminate between different cases, as in the
definition of the factorial function fac shown in Section 1, Curry also offers a
Boolean equality operator “==” which evaluates to True if both arguments can
be evaluated to identical data terms, and to False if the arguments evaluate to
different data terms. Conceptually, “==” can be considered as defined by rules
comparing constructors of the same type, i.e., by the following rules (“&&” is the
Boolean conjunction):

True == True = True [] == [] = True

False == False = True (x:xs) == (y:ys) = x==y && xs==ys

True == False = False [] == (y:ys) = False

False == True = False (x:xs) == [] = False

As already discussed in [6], the presence of the types Success and Bool together
with two equality operators, rooted in the history of Curry, might cause con-
fusions and should be avoided in order to obtain a simpler definition of Curry.
Hence, [6] proposes to omit the type Success and the operator “=:=” from
the definition of Curry, and we follow this proposal in our paper. Note that
one can also solve equations by narrowing with the above rules. For instance,
[x,x]==[True,y] is solved by instantiating x and y to True while evaluat-
ing “==”. However, solving equations by narrowing with “==” rules has also
a drawback compared to logic programming. If there is an equation between two
variables, narrowing enumerates all values for these variables whereas unifica-
tion (deterministically!) binds one variable to the other. Hence, the expression
“xs == ys && xs++ys == [True]” has an infinite search space with solely False

results.

This was the motivation for the inclusion of the operator “=:=” in Curry.
Conceptually, it can be considered as defined by “positive” rules:

True =:= True = True [] =:= [] = True

False =:= False = True (x:xs) =:= (y:ys) = x=:=y && xs=:=ys



Thus, “=:=” yields True for identical data terms or fails.3 Operationally, these
rules are not applied by narrowing but combined with the unification principle
[27], i.e., if one argument is a free variable, it is bound to the evaluated data
term of the other side (if the variable is not contained in this term, see [21] for
details). Therefore, the expression “xs =:= ys” evaluates to True by binding xs

to ys and the expression “xs =:= ys && xs++ys =:= [True]” has a finite search
space without any result.

It would be desirable to automatically replace occurrences of “==” by “=:=”
whenever it can be done without losing solutions (see the next section). This
would free the programmer from having to select the “right” equality and sim-
plify the language: programmers always use “==” so that the operator “=:=” is
just an optimization of “==”. This is the motivation for our current work.

Since Curry with all its syntactic sugar (we have only presented a small frag-
ment of it) is a quite rich source language, a simpler intermediate representation
of Curry programs has been shown to be useful to describe the operational se-
mantics [1], compile programs [10, 19], or implement analyzers [20] and similar
tools. Programs of this intermediate language, called FlatCurry, contain a single
rule for each function where the pattern matching strategy is represented by
case expressions. The basic structure of FlatCurry is defined as follows (where
xi denotes variables, f defined functions, C constructors, and ok a sequence of
objects o1 . . . ok):

P ::= D1 . . . Dm (program)

D ::= f xn = e (function definition)

p ::= C xn (flat pattern)

e ::= x (variable)
| C en (constructor application)
| f en (function application)
| case e0 of {pk → ek} (case distinction)
| e1 ? e2 (non-deterministic choice)

A program P (we omit data type declarations) consists of a sequence of func-
tion definitions D with pairwise different variables in the left-hand sides. The
right-hand sides are expressions e composed by variables, constructor and func-
tion calls, case expressions, and disjunctions. A case expression4 has the form
case e of {C1 xn1

→ e1, . . . , Ck xnk → ek}, where e is an expression, C1, . . . , Ck
are different constructors of the type of e, and e1, . . . , ek are expressions. The
pattern variables xni are local variables which occur only in the corresponding
subexpression ei

By fixing a strategy to match arguments, one can translate Curry programs
into FlatCurry programs. The higher-order constructs of Curry are translated

3 Note that we omit the type Success, as proposed in [6]. Hence, equational constraints
as well as rule conditions are of type Bool rather than Success, in contrast to the
current definition of Curry [21].

4 Since we do not discuss residuation and concurrent computations, we also omit the
difference between rigid and flexible case expressions [18].



into FlatCurry by defunctionalization [26]. Thus, lambda abstractions are trans-
formed into top-level functions and there is a predefined operation apply to apply
an expression of functional type to an argument (see [18, 29] for more details).

Conditional rules are not present in FlatCurry since, as shown in [3], they can
be transformed into unconditional ones by introducing a “conditional” operator
cond defined by

cond True x = x

For instance, the rule defining last as shown above can be transformed into

last xs = cond (_++[x] =:= xs) x

The evaluation strategy of Curry is by-need. Hence, the second argument of cond
is evaluated only if the first argument is True.

3 Transforming Equalities

In this section we discuss an automatic method to replace occurrences of Boolean
equalities of the form e1==e2 by an equational constraint e1=:=e2. Obviously,
such a replacement is not always correct. For instance, consider the following
contrived example:

isEmpty xs = if xs==[] then True else False

If we evaluate the expression “isEmpty xs”, where xs is a free variable, we
obtain the following two results (e.g., with the Curry system KiCS2 [10]):

{xs = []} True

{xs = (_x1:_x2)} False

These two results are computed by narrowing the equation xs==[] w.r.t. the
rules defining “==” shown in the previous section. However, if we replace the
Boolean equality by an equational constraint, as in

isEmpty’ xs = if xs=:=[] then True else False

and evaluate the expression “isEmpty’ xs”, then we obtain only the single result

{xs = []} True

since the constraint “xs=:=[]” can only be satisfied, i.e., delivers the value True

only.
Thus, in order to avoid losing solutions, a Boolean equation e1==e2 can be

replaced by the equational constraint e1=:=e2 if it is ensured that only the value
True is required as the result of this equation. In general, this depends on the
context of the equation. Fortunately, there are many situations in functional
logic programs where this requirement can be deduced. For instance, consider
the following definition of last:

last xs | xs == _++[x] = x

As discussed above, this rule is transformed into the unconditional rule

last xs = cond (xs == _++[x]) x

Since the definition of cond requires that the first argument must have the value
True in order to evaluate a cond expression, the condition can be replaced by
an equational constraint:



last’ xs = cond (xs =:= _++[x]) x

Hence, if we evaluate last’ [x,42], where x is a free variable, we obtain the
single result

{x = _x1} 42

On the other hand, we obtain infinitely many answers for the expression
last [x,42] (where in each answer x is bound to a different integer value).
Similarly, we can replace the occurrences of “==” by “=:=” in the rule

f xs ys | xs == _++[x] && ys == _++[x]++_ = x

However, in the rule

g xs ys | xs == _++[x] && not (ys == _++[x]++_) = x

only the first occurrence of “==” can be replaced by “=:=”, since the second
occurrence is required to be evaluated to False in order to apply the rule.5

These examples show that a careful analysis of the kind of values required for
a successful evaluation is necessary in order to perform our proposed transforma-
tion. Note that such an analysis is different from a strictness analysis in purely
functional programming [23]. A strictness analysis provide information about
the necessary demand of computation in order to compute any value, whereas
we need information about possible values in order to compute other values. For
instance, in order to transform the definition of f above, it is necessary to know
that both arguments of the conjunction operator “&&” need to be True in order
to obtain the overall value True. For this purpose, we define in the next section
an appropriate analysis for “required” values.

4 Analysis of Required Values

Our goal is to develop a program analysis to infer which kind of values are
required at some position in a program in order to compute a result, i.e., some
value. To obtain a manageable analysis, we consider only top-level constructors
in the analysis so that a value is some constructor-rooted expression. In principle,
this could be extended to any depth bound k (as used in the abstract diagnosis
of functional programs [2] or in the abstraction of term rewriting systems [8,
9]), but in practice only a depth k = 1 (i.e., top-level constructors) is useful due
to the quickly growing size of the abstract domain for k > 1. For instance, for
lists we distinguish the values [] (empty list) and “:” (non-empty lists) and for
Booleans we distinguish the values True and False.

Following the framework of abstract interpretation [13], we define for each
type τ an abstract domain τα, i.e., a set of abstract values, as follows. If Cτ =
{C1, . . . , Ck} denotes the set of all constructors of type τ , then τα = 2Cτ ∪{Any},
i.e., an abstract value of τα is either a subset of the constructors of type τ or
the specific constant Any denoting any expression. For instance, the abstract
domain for Boolean values is

5 The latter equality could also be improved if disequality constraints [7, 22] are avail-
able in the target language, but since this is not the case for standard implementa-
tions of Curry, we do not consider them in this paper.



Boolα = { ∅, {True}, {False}, {True,False}, Any }

Abstract values are ordered by: for all τ1 and τ2, τ1 v Any , and τ1 v τ2 if
τ1 ⊆ τ2 and both are not Any . Thus, the least upper bound of two abstract
values τ1 6= Any 6= τ2 is their set union, i.e., τ1 t τ2 = τ1 ∪ τ2.

The meaning of an abstract value a, i.e., the concretization JaK of a, is the
set of all expressions, if a = Any , or, if a 6= Any , the set of all values rooted
by some constructor of a (where root(e) denotes the symbol at the root of the
expression e): JaK = {e | root(e) ∈ a}. We call two abstract values a, a′ ∈ τα

compatible if JaK ∩ Ja′K 6= ∅, i.e., if they have some element in common.
As discussed above, we are interested to deduce required argument values

from required result values. For instance, if True is the required value of a con-
junction e1 && e2, then True is also the required value of both e1 and e2. We
denote this property by (&&) ::α {True},{True}→{True}.

We can read this type as: in order to compute the result True, the argument
values are required to be True. Or: unless both arguments are evaluated to True,
the result cannot be True.

Definition 1. A typing f ::α a1, . . . , an → a of a function f is correct if, for
all e = f e1 . . . en, the following implication holds: if e evaluates to some value
(constructor-rooted term) t ∈ JaK, then, for i = 1, . . . , n, ei evaluates to some
t′i ∈ JaiK.

The above notion of correctness establishes a condition on the values of the
arguments of a function application to produce a certain value as the result
of the application. For each function f of (concrete) type τ1, . . . , τn → τ , the
typing f ::α Any , . . . ,Any → Cτ (with appropriate numbers of arguments) is
correct since any expression is an element of JAnyK. Clearly, defined functions
can have more than one correct typing. For instance, the negation operator not
has the types

not ::α {True} → {False}
not ::α {False} → {True}

and the conjunction operator (&&) has the types

(&&) ::α {True},{True} → {True}
(&&) ::α Any,Any → {False}

These abstract types can be used as follows. If the condition of a program rule
has the form e1 && e2, the value True is required as the result of this conjunction.
By the first type of “&&”, we can deduce that True is also required as the result
of both expressions e1 and e2, otherwise the conjunction cannot be evaluated
to True. However, if a condition has the form not (e1 && e2), we cannot deduce
a single value required for e1 or e2 (by the second type of “&&”), since this
condition yields True if e1 has the value False or if e1 has the value True and
e2 has the value False. Note that

(&&) ::α {False},Any →{False}
is not a correct typing: True 6∈ J{False}K but True && False ∈ J{False}K. This
is intended: we cannot deduce from the required result value False that the first
argument is required to be False.



Var
F ` x ::α a | {x ::α a} if x is a variable

Con
F ` C e1 . . . en ::

α a | ∅
if {C} and a are compatible

Fun
F ` e1 ::

α a1 | E1 . . . F ` en ::
α an | En

F ` f e1 . . . en ::
α a |

d
{Ei | ai 6= Any}

if f ::α a1, . . . , an → a ∈ F

Or
F ` e1 ::

α a | E1 F ` e2 ::
α a | E2

F ` e1 ? e2 ::
α a | E1 t E2

Case

F ` e0 ::
α a′ | E0 F ` e1 ::

α a | E1 . . . F ` ej ::
α a | Ej

F ` ej+1 ::
α aj+1 | Ej+1 . . . F ` en ::

α an | En
F ` case e0 of {C1 xk1 → e1; . . . ;Cn xkn → en} ::α a | E0 u (E1 t . . . t Ej)

if C1, . . . , Cj ∈ a′ and, for i = j + 1, . . . , n, ai and a are not compatible

Fig. 1. Abstract typing rules for FlatCurry expressions

In order to define well-typed programs, we assume a type environment F
(for a given program) which contains for each n-ary function symbol f occurring
in the program at least one element of the form f ::α a1, . . . , an → a. Since we
want to know required values of arguments in order to compute some value of an
expression, our type analysis also returns a variable type environment E contain-
ing variable types x ::α a for variables x occurring in the expression. The least
upper bound E1tE2 of two variable type environments E1 and E2 is the element-
wise least upper bound of the associated types (where absent type information
is interpreted as Any), e.g., {x ::α {True}, y ::α {True}} t {x ::α {False}} =
{x ::α {True, False}, y ::α Any}. Observe that y ::α Any is in the upper bound
because the second environment places no restrictions on y. Similarly, E1 u E2

denotes the greatest lower bound of E1 and E2.

The (abstract) typing rules are shown in Fig. 1. The notation F ` e ::α a |
E should be read as: “if e is evaluated to some value of type a w.r.t. type
environment F , then E are the required values of variables occurring in e.”
Rule Var requires the type of a variable as the type of the expression. Rule
Con does not put requirements on variables since the term is already a value.
Rule Fun requires well-typed arguments and an appropriate function typing to
apply a function, but joins only the requirements of arguments where a value
is required, since other arguments might not be evaluated. Rule Or requires
that both alternatives of a choice expression must have the same type where the
variable type environments are unified from both alternatives. Finally, rule Case
requires that the constructors of the patterns in the various branches must be
contained in the type of the discriminating expression. However, branches with
a type that is not compatible with the overall result type are ignored. By this
refinement, we can obtain more precise information about required arguments.



Definition 2. A program P is well typed w.r.t. a type environment F for P
if, for each rule f x1 . . . xn = e ∈ P and each f ::α a1, . . . , an → a ∈ F , F `
e ::α a | E is derivable by the rules in Fig. 1, for some variable type environment
E, and, for i = 1, . . . , n, a′i ⊆ ai if xi ::

α a′i ∈ E, otherwise ai = Any, i.e., the
deduced required value is more specific or does not occur.

We show the usage of this type system by a few examples that are relevant for
the application intended with this paper. In these examples, we write T and F

for the abstract types {True} and {False}, respectively. The first example is
the operator cond introduced in Sect. 2 to transform conditional equations. In
FlatCurry, this operator is defined by the rule

cond x y = case x of { True → y }

This rule is well-typed w.r.t. cond ::α T,Any → Any so that we can deduce that
the first argument is required to be True in order to compute any value. Note
that this rule is also well typed w.r.t. cond ::α Any ,Any → Any , but this typing
provides less precise information about required arguments.

The second example is the negation operator not defined by

not x = case x of { True → False

; False → True }

It is easy to check that not ::α T → F is a well-typing of not since the following
derivation is valid w.r.t. F = {not ::α T→ F}:

F ` x ::α T | {x ::α T} V ar F ` False ::α F | ∅ Con
F ` True ::α T | ∅ Con

F ` case x of {True→ False; False→ True} ::α F | {x ::α T} Case

Note that the second case branch is ignored in the application of the Case rule
since its result type T is not compatible with the overall result type F. Similarly,
the following types (among others) can be derived to be well typed:

not ::α F → T

not ::α {False, True} → Any

Finally, we consider the conjunction operator (&&) defined by

x && y = case x of { True → y

; False → False }

(&&) ::α T, T → T is a well-typing since the following derivation holds for the
type environment F = {(&&) ::α T, T→ T}:

F ` x ::α T | {x ::α T} V ar F ` y ::α T | {y ::α T} V ar F ` False ::α F | ∅ Con

F ` case x of {True→ y; False→ False} ::α T | {x ::α T, y ::α T} Case

The correctness of our type analysis can be stated by the following theorem:

Theorem 1. If a program P is well typed w.r.t. a type environment F for P ,
then each f ::α a1, . . . , an → a ∈ F is correct.

We have seen in various examples that there does not exist a meaningful most
general type for each function. Although we could type each function f by



f ::α Any , . . . ,Any → Any , this type does not provide any useful information
about required arguments. Thus, the inference of types is more complex than in
classical type inference systems [14].

Instead, we use the idea to compute types by a fixpoint analysis [12].
The analysis is started with no information about each function (e.g.,
f ::α Any , . . . ,Any → Any) and uses the rules in Fig.1 to compute values for
required arguments. If the analysis computes some more precise information
about the result of a function, i.e., a result type like {C}, then the analysis is
started again with all constructors (of the corresponding concrete data type): if
C1, . . . , Ck are all constructors of the data type to which C belongs, we restart
the analysis with the environment containing f ::α Any , . . . ,Any → {Ci} (for
i = 1, . . . , k). In this way we obtain more meaningful results without testing
all constructors from the beginning, which seems a good compromise between
efficiency and precision of the analysis.

5 Implementation

The analysis of required values is a prerequisite to implement the transformation
of equalities as discussed in Sect. 3. To implement the analysis, we used the
Curry analysis system CASS [20]. CASS is a generic program analysis system
which provides an infrastructure to implement new bottom-up analyses. CASS
requires only the definition of the abstract domain and the abstract operations
to compute the abstract values for each function based on given abstract values
for the operations on which the operation to be analyzed depend. Then the
reading, parsing, and analysis of modules in their import order and the fixpoint
computations are managed by CASS.

The results of the analysis are used to transform Boolean equations as follows.
For each function f , we apply the rules in Fig. 1 in order to compute the required
values at an occurrence of an expression of the form e1==e2 in the right-hand side
of the rule of f . If the abstract type is always {True}, we replace this expression
by e1=:=e2. This is justified by the fact that the result False is never required
when this function must be evaluated.

Hence, our implementation automatically transforms the occurrences of “==”
shown in Sect. 3. Since this transformation is performed on FlatCurry programs,
it can be easily integrated into the compilation chain for Curry programs. In
fact, the transformation is fully integrated into the current releases of the Curry
systems PAKCS [19] and KiCS2 [10].

In order to evaluate the usefulness of our transformation, we tested it on
some benchmarks. As discussed in Sect. 2, our transformation can reduce infinite
search spaces into finite ones. For instance, the expression

cond (xs == ys && xs++ys == [True]) True

has an infinite search space, whereas the transformed expression

cond (xs =:= ys && xs++ys =:= [True]) True

has a finite search space. Even in the case of finite search spaces, replacing
Boolean equations by equational constraints often has a good impact on the run



Expression == =:=

last 10 0.01 0.00
last 15 0.41 0.00
last 20 13.12 0.00
fromPeano (half (toPeano 10000)) 31.09 12.98
grep 0.54 0.37
simplify 22.41 16.68
varInExp 0.95 0.42

Fig. 2. Benchmarks: comparing Boolean equations and equational constraints

time since non-deterministic search is transformed to deterministic bindings, as
demonstrated by some benchmarks.

We used the Curry implementation KiCS2 [10] for the benchmarks. KiCS2
evaluates the Boolean equality operator by narrowing with the “==” rules shown
in Sect. 2 and the equational constraints by managing variable bindings [11].
The benchmarks were executed on a Linux machine (Debian 8.0) with an Intel
Core i7-4790 (3.60Ghz) processor and 8GiB of memory. KiCS2 (Version 0.4.0)
has been used with the Glasgow Haskell Compiler (GHC 7.6.3, option -O2) as
its backend. The timings were performed with the time command measuring the
execution time to compute all solutions (in seconds) of a compiled executable
for each benchmark as a mean of three runs. The programs used for the bench-
marks are last n (compute the last element of a list containing n− 1 variables
and True at the end), half (compute the half of a Peano number using logic
variables), grep (string matching based on a non-deterministic specification of
regular expressions [5]), simplify (simplify a symbolic arithmetic expression),
and varInExp (non-deterministically return a variable occuring in a symbolic
arithmetic expression). Figure 2 shows the execution times to evaluate some
expressions without (==) or with (=:=) our transformation. As expected, the
creation and traversal of a large search space introduced by “==” is much slower
than manipulating variable bindings by “=:=”.

6 Practical Evaluation

In this section we discuss some practical experiences we made with our trans-
formation tool.

As mentioned above, the transformation tool is integrated into the compila-
tion chain of the recent releases of the Curry systems PAKCS [19] and KiCS2
[10]. The configuration files of these systems allow the user to set the following
usage modes: “off” (do not apply this transformation), “full” (analyze programs
as described in Sect. 4 and perform the transformation described in Sect. 5),
or “fast” (which is the default: use pre-computed analysis information of stan-
dard operations from the prelude to perform the transformation described in
Sect. 5). The advantage of the “fast” mode is that it is a reasonable compromise
between effectiveness and efficiency. In this mode, the transformation described



Program #lines full fast =:= (orig.) == (transf.)

CHR 474 2.65 0.76 11 11
CurryStringClassifier 194 0.82 0.25 21 21
HTML 1316 6.04 2.14 13 13
Parser 49 0.22 0.02 6 6
SetFunctions 90 0.40 0.07 28 28

AddTypes 117 1.46 0.20 4 4
Curry2JS 633 2.85 0.85 6 6

maxtree 17 0.18 0.01 3 3
queens 12 0.19 0.01 5 2

Fig. 3. Benchmarks: transforming Boolean equations into equational constraints

in Sect. 5 does not perform the fixpoint analysis of Sect. 4, but it simply uses the
pre-computed abstract types for the most relevant Boolean functions defined in
the prelude, like (&&) (conjunction), (||) (disjunction), not (negation), and the
conditional operator cond. The transformation itself can be efficiently performed
by considering only functions that contain occurrences of “==”. Thus, even large
modules are transformed without any perceivable slowdown in the compilation
chain.

Although the “fast” mode uses only the results of a few Boolean operations
defined in the standard prelude, it is sufficient in practice, as our tests indicate.
For these tests, we replaced in various existing Curry programs all equational
constraints by Boolean equalities and checked how many of these Boolean equal-
ities are replaced by equational constraints with our transformation tool. The re-
sults are shown in Fig. 3. The first group of Curry programs are standard libraries
distributed with KiCS2, where HTML is the largest one (supporting programming
of dynamic web pages [16]). The next two programs (AddTypes, Curry2JS) are
tools contained in the KiCS2 distribution to add type signatures to top-level op-
erations and compiling Curry programs into JavaScript programs (which is used
to implement type-safe dynamic web pages [17]), respectively. The last two pro-
grams are small examples demonstrating typical functional logic programming
techniques.

The first three result columns show the number of lines of code and the
transformation times in the “full” and “fast” mode (in seconds, where the same
machine as for the benchmarks in the previous section has been used). These
numbers clearly indicate the advantage of the “fast” mode. Moreover, there was
no difference in the transformation results between these modes. These results
are summarized in the last two columns: they show the number of equational con-
straints (“=:=”) occurring in the original programs6 and the number of Boolean
equalities (“==”) that have been transformed back into equational constraints by

6 A logic programmer might wonder about the low number of equational constraints
even in larger functional logic programs. This is mainly due to the fact that func-
tional logic programming supports nested expressions (where Prolog programmers
have to use auxiliary variables and unification to connect the result from an inner



our transformation tool. The numbers in these columns show that our tool was
able to transform almost all of them into constraints. The rare cases where this
was not possible (queens) are operations that return constraints to be solved
instead of using them in a condition of a program rule. For instance, consider
an operation that returns True if its three arguments are pairwise equal:

equ3 x y z = x==y && y==z

Obviously, our transformation cannot replace the Boolean equalities by equa-
tional constraints since this may cause a loss of solutions. For instance, for
Boolean values, the expression “not (equ3 x y z)” evaluates to True by bind-
ing x to True and y to False (among other solutions). Such solutions would be
lost if we replace “==” by “=:=”. However, if it is intended that the operation
equ3 should only be used for “positive” evaluations, one can easily redefine it
by

equ3 x y z | x==y && y==z = True

With this definition, our transformation tool is able to replace both occurrences
of “==” by “=:=”.

7 Conclusions

We have presented an automatic method to replace Boolean equalities by equa-
tional constraints in functional logic programs. This can be done only if it is
ensured that True is required as the result of a Boolean equality, which is the
case, e.g., in conditions of rules. To this aim, we developed an analysis for re-
quired values. This analysis can be seen as a non-standard type inference where
abstract types represent sets of required values. The results of this analysis are
then used to drive the actual program transformation.

Our transformation method has the following advantages over the current
design of functional logic languages like Curry:

1. The source language becomes simpler. Since equational constraints are con-
sidered as an optimization of Boolean equality, the existing type Success

can be omitted (as proposed in [6]). This has the consequence that quite
similar operations, like inequalities between values ((<=)), do not need to
be duplicated for the type of Boolean and constraints, as it is currently the
case.

2. It is not necessary to consider the subtle differences between the type Bool

and Success and the operators “==” and “=:=”. A programmer uses “==”
only (where the operator “=:=” must still be provided for the transforma-
tion target and in exceptional cases where a programmer wants to write
efficient code independent of a program transformation). This also simplifies
the teaching of declarative multi-paradigm languages [15].

computation to an outer one). Moreover, predicates delivering multiple results can
also be expressed as non-deterministic functions.



3. Equational constraints can be considered as an optimized implementation of
Boolean equalities. Hence, from a declarative point of view, one has to deal
with Boolean equalities only, which are easy to define by standard rewrite
rules as shown in Sect. 2.

If the target system also supports disequality constraints, as proposed in early
functional logic languages [7, 22], one could exploit them in an extension of our
transformation tool. For instance, if an expression e1==e2 requires always False
as its result, one could replace it by e1=/=e2, where the operator “=/=” represents
a disequality constraint. This might be more efficient than guessing values by
narrowing with the standard “==” rules but requires a specific implementation
of a solver for “=/=”.
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