
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Sharrad, Joanna and Chitil, Olaf and Wang, Meng (2018) Delta Debugging Type Errors with
a Blackbox Compiler. In: Proceedings of the 30th Symposium on Implementation and Application
of Functional Languages. ACM pp. 13-24. ISBN 978-1-4503-7143-8.

DOI

https://doi.org/10.1145/3310232.3310243

Link to record in KAR

https://kar.kent.ac.uk/74037/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/200248068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Delta Debugging Type Errors with a Blackbox Compiler

Joanna Sharrad
University of Kent

Canterbury, UK

jks31@kent.ac.uk

Olaf Chitil
University of Kent

Canterbury, UK

oc@kent.ac.uk

Meng Wang
University of Bristol

Bristol, UK

meng.wang@bristol.ac.uk

ABSTRACT

Debugging type errors is a necessary process that programmers,

both novices and experts alike, face when using statically typed

functional programming languages. All compilers often report the

location of a type error inaccurately. This problem has been a sub-

ject of research for over thirty years. We present a new method

for locating type errors: We apply the Isolating Delta Debugging

algorithm coupled with a blackbox compiler. We evaluate our im-

plementation for Haskell by comparing it with the output of the

Glasgow Haskell Compiler; overall we obtain positive results in

favour of our method of type error debugging.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Theory of computation→ Program analysis;

KEYWORDS

Type Error, Error diagnosis, Blackbox, Delta Debugging, Haskell

ACM Reference Format:

Joanna Sharrad, Olaf Chitil, and Meng Wang. 2018. Delta Debugging Type

Errors with a Blackbox Compiler. In Proceedings of International Symposium

on Implementation and Application of Functional Languages (IFL’18). ACM,

New York, NY, USA, Article 1, 11 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Compilers for Haskell, OCaml and many other statically typed func-

tional programming languages produce type error messages that

can be lengthy, confusing and misleading, causing the programmer

hours of frustration during debugging. One role of these messages

is to tell the programmer the location of a type error within the

ill-typed program. Although there has been over thirty years of

research [8, 22] on how to improve the way we locate type conlicts

and present them to the programmer, type error messages can be

misleading. We can trace the cause of inaccurate type error location

to an advanced feature of functional languages: type inference.

A typical Haskell or OCaml program contains only little type

information: deinitions of data types, some type signatures for

top-level functions and possibly a few more type annotations. Type

inference works by generating constraints for the type of every

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

IFL’18, August 2019, Lowell, MA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/0000001.0000001

expression in the program and solving these constraints. An ill-

typed program is just a program with type constraints that have

no solution. Because the type checker cannot know which pro-

gram parts and thus constraints are correct, that is, agree with

the programmer’s intentions, it may start solving incorrect con-

straints and therefore assume wrong types early on. Eventually, the

type checker notes a type conlict when considering a constraint

(generated by an expression of the program) that is correct.

1.1 Variations of an Ill-Typed Programs

Consider the following Haskell program from Stuckey et al. [17]:

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3 | otherwise = x : y : ys

The program deines a function that shall insert an element into an

ordered list, but the program is ill-typed. Stuckey et al. state that

the irst line is incorrect and should instead look like below:

1 insert x [] = [x]

The Glasgow Haskell Compiler (GHC) version 8.2.2 wrongly gives

the location of the type error as (part of) line two.

2 insert x (y:ys) | x > y = y : insert x ys

Let us see how GHC comes up with this wrong location. GHC

derives type constraints and immediately solves them as far as

possible. It roughly traverses our example program line by line,

starting with line 1. The type constraints for line 1 are solvable

and yield the information that insert is of type α → [β] →

α . Subsequently in line 2 the expression x > y yields the type

constraint that x and y must have the same type, so together with

the constraints for the function arguments x and (y:ys), GHC

concludes that insert must be of type α → [α] → α . Finally,

the occurrence of insert x ys as subexpression of y : insert

x ysmeans that the result type of insert must be the same list type

as the type of its second argument. So insert x ys has both type

[α] and type α , a contradiction reported as type error.

Our program contains no type annotations or signature, meaning

we have to infer all types. Surely adding a type signature will ensure

that GHC returns the desired type error location? Indeed for

1 insert :: Ord a => a -> [a] -> [a]

2 insert x [] = x

3 insert x (y:ys) | x > y = y : insert x ys

4 | otherwise = x : y : ys

GHC identiies the type error location correctly:

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

IFL’18, August 2019, Lowell, MA, USA J. Sharrad. O. Chitil. M. Wang.

2 insert x [] = x

However, a recent study showed that type signatures are often

wrong [23]. Wrong type signatures are the cause of 30% of all type

errors! GHC trusts that a given type signature is correct and hence

for

1 insert :: Ord a => a -> [a] -> a

2 insert x [] = x

3 insert x (y:ys) | x > y = y : insert x ys

4 | otherwise = x : y : ys

GHC wrongly locates the cause in line 2 again:

2 insert x (y:ys) | x > y = y : insert x ys

In summary we see that the order in which type constraints are

solved determine the reported type error location. There is no ixed

order to always obtain the right type error location and requiring

type annotations in the program does not help.

As a consequence researchers developed type error slicing [7,

16], determining a minimal unsatisiable type constraint set and

reporting all program parts associated with these constraints as

type error slice. However, practical experience showed that these

type error slices are often quite big [7] and thus they do not provide

the programmer with suicient information for correcting the type

error. Our aim is to determine a smaller type error location, a single

line in the program.

1.2 Our Method

Our method is based on the way programmers systematically debug

errors without additional tools. The programmer removes part of

the program, or adds previously removed parts back in. They check

for each such variant of the program whether the error still exists

or has gone. By doing this systematically, the programmer can

determine a small part of the program as the cause of the error.

This general method was termed Delta Debugging by Zeller

[24]. Speciically, we apply the Isolating Delta Debugging algorithm,

which determines two variants of the original program that capture

a minimal diference between a correct and erroneous variant of

the program. Eventually our method produces the following result:

Listing 1: Result of our type error location method

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3 | otherwise = x : y : ys

This program listing with diferent highlighting shows that the

type error location is in line 1 and that line 1 and 2 together cause

the type error; that is, even without line 3 this program is ill-typed.

The Isolating Delta Debugging algorithm has two prerequisites;

An input that can repeatedly be modiied and ameans of inquiring if

these modiications were successful. We fulil the irst prerequisites

by employing the raw source code of the programmer’s ill-typed

program. We then work directly on the program text rather than

the abstract syntax tree. We make modiications that generate new

variants of the program ready for testing to see if they remain ill-

typed. To examine if they are indeed ill-typed or not, we employ

the compiler as a black box. We do not use any location information

included in any type error message of the compiler. This black box

satisies the second prerequisite of the Isolating Delta Debugging

algorithm.

Once implemented in our tool Gramarye, we can apply our

method to any ill-typed program, no matter how many type errors

it contains, to locate one type error. Once our approach has the

correct location, the programmer can ix it and reuse the tool to

ind further type errors.

Our tool Gramarye works on Haskell programs and uses the

Glasgow Haskell Compiler as a black box. We evaluated Gramarye

against the Glasgow Haskell Compiler using thirty programs con-

taining single type errors and eight hundred and seventy programs

generated to include two type errors.

Our paper makes the following contributions:

• We describe how to apply the Isolating Delta Debugging

algorithm to type errors (Section 2).

• We use the compiler as a true black box; it can easily be

replaced by a diferent compiler (Section 3.2).

• We implement the method in a tool called Gramarye that

directly manipulates Haskell source code (Section 3.3).

• We evaluate our method against the Glasgow Haskell Com-

piler (Section 4).

Our evaluation shows an improvement in reporting type er-

rors for many programs and demonstrates that our approach has

promise in the ield of type error debugging.

2 AN ILLUSTRATION OF OUR METHOD

Figure 1 gives an overview of the Gramarye framework. It indicates

the steps taken to locate type errors in an ill-typed program.

We start with a single ill-typed Haskell program. This program

must contain a type error; otherwise we reject it. Here we work

with the original ill-typed program of the Introduction.

From this program, we obtain two programs that the Isolating

Delta Debugging algorithm will work with. One is a lower bound,

and the other one is an upper bound with respect to the type error.

The empty program is deinitely a lower bound and the ill-typed

program itself an upper bound:

Listing 2: lower bound program, step 1

1

2

3

Listing 3: upper bound program, step 1

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3 | otherwise = x : y : ys

Now we move a single line from the upper bound program to

the lower bound program.We can pick any line, for example, line 3:

Delta Debugging Type Errors with a Blackbox Compiler IFL’18, August 2019, Lowell, MA, USA

Result

Sour e Code

Bla k o
Co piler

Delta
Debugging

.

. ..

I put ra sour e ode , .
Re ursio o er Pro ra File , , .
Output result o Rele a t Di ere e , .

Error Messa e

M
od

ii
at

io

Gra ar e

Sour e Code

Figure 1: The Gramarye Framework

Listing 4: modiied lower bound program, step 1

1

2

3 | otherwise = x : y : ys

Listing 5: modiied upper bound program, step 1

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3

We now send these two programs to the black box compiler for

type checking:

• Modiied lower bound program, step 1: non-type error.

• Modiied upper bound program, step 1: ill-typed.

The lower bound program is not a syntactically valid Haskell pro-

gram; the compiler yields a parse error. So note that our black box

compiler yields one of three possible results:

(1) non-type error

(2) ill-typed

(3) well-typed; compilation was successful

A compilation result non-type error is not useful for locating a type

error, but each of the other two possible results are. Our modiied

upper bound program is smaller than our original upper bound

program. We now know that the modiied variant is ill-typed too,

so we can replace our upper bound for the next step:

Listing 6: lower bound program, step 2

1

2

3

Listing 7: upper bound program, step 2

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3

The algorithm now repeats: Again we move a single line from the

upper bound program to the lower bound program. Let us pick line

2:

IFL’18, August 2019, Lowell, MA, USA J. Sharrad. O. Chitil. M. Wang.

Listing 8: modiied lower bound program, step 2

1

2 insert x (y:ys) | x > y = y : insert x ys

3

Listing 9: modiied upper bound program, step 2

1 insert x [] = x

2

3

Again we send these two programs to the black box compiler for

type checking:

• Modiied lower bound program, step 2: well-typed.

• Modiied upper bound program, step 2: well-typed.

Because both variants are well-typed and bigger than the previous

lower bound, we can use either of them as new lower bound. We

pick the modiied lower bound program and thus obtain;

Listing 10: lower bound program, step 3

1

2 insert x (y:ys) | x > y = y : insert x ys

3

Listing 11: upper bound program, step 3

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3

The upper and lower bound difer by only a single line, and hence

our algorithm terminates.

The inal result is that the diference between upper and lower

bound, here line 1, is the location of the type error. Because the

upper-bound is ill-typed, we also know that only lines 1 and 2 are

needed for an ill-typed program. Thus we obtain the output shown

in the Introduction. If we want to add a compiler type error message

for further explanations, we can pick the one we received for the

upper bound program. The error message may be clearer than for

the original, larger program.

Our method is non-deterministic. Often diferent choices lead

to the same inal result, but not always. Zeller argues that the

non-determinism still does not matter and that one result provides

insightful debugging information to the programmer [25].

The algorithm is based on an ordering of programs, where a

program is just a sequence of strings. A program P1 is less or equal

a program P2 if they have the same number of lines and for every

line, the line content is either the same for both programs, or the

line is empty in P1. All programs that we consider are between

the lower and upper bound programs that we start with. The inal

upper and lower bound have minimal distance, that is, they either

difer by just one line or programs between them yield a non-type

error at compilation (and thus are not syntactically valid programs).

In this example, in each step, we moved only a single line from

upper bound to lower bound. For programs with hundreds of lines,

this simple approach would be expensive in time due to, too many

programs needing consideration. Hence we use the full Isolating

Delta Debugging algorithm which starts with moving either the

irst or second half of the program from upper to lower bound. If

both modiied programs yield a non-type error, then we change

the granularity of modiications from moving half the program

to moving a quarter of the program. In general, every time both

modiied programs yield a non-type error, we half the size of our

modiications. This change of granularity can continue until only a

single line is modiied.

3 IMPLEMENTATION

As illustrated in igure 1, our Gramarye tool has four components;

• Delta Debugging.

• Blackbox Compiler.

• Source Code Modiication.

• Result processing.

We shall next describe each of the components in greater detail.

3.1 Delta Debugging

The irst component of our tool is Delta Debugging, a method for-

malised by Zeller [6, 24ś26], that can be described as a system-

atic replication of the scientiic approach of Hypothesis-Test-Result

[25]. When programmers debug they irst use the error message to

narrow the cause (Hypothesis), then modify the source code and

recompile (Test), and lastly use the outcome of the recompilation

(Result) to see if the modiications were successful. To implement

the scientiic approach Zeller splits his Delta Debugging method

into two algorithms he refers to as Simplifying and Isolating [25].

3.1.1 Simplifying Delta Debugging.

Simplifying Delta Debugging has similarities with program slicing

[7, 16]. The algorithm tries to assemble a minimal set of source

code, returning this set to the programmer as the smallest work-

ing version of their program. To complete the generation of the

minimal set the algorithm removes sections of a broken program

until it no longer contains an error. To make sure the set is truly

minimal a secondary working program is necessary. The secondary

program can either be empty(containing no source code), or a pre-

vious working version of the initial program. A minimal set can

be declared when the broken program is as close to the working

program as possible without the removal of the error. The minimal

set of source code allows us to surmise that the parts of the pro-

gram left must be the cause of our error. However, the Simplifying

Delta Debugging algorithm has the same laws as program slicing

and, can return large minimal sets. The second Delta Debugging

algorithm, Isolating, aims to reduce the size of the sets even further.

3.1.2 Isolating Delta Debugging.

Isolating Delta Debugging incorporates the Simplifying algorithm

to generate a minimal set of source code that contains an error. As

well as employing the use of the simplifying algorithm, the isolat-

ing algorithm produces its own minimal set of source code; one

that does not hold an error. The isolating minimal set is created by

taking the working program and, adding sections until the program

reports an error. The aspect of having two minimal sets, one that

Delta Debugging Type Errors with a Blackbox Compiler IFL’18, August 2019, Lowell, MA, USA

contains the error and one that does not, is our reason for choosing

the latter algorithm over the former. Focusing on the output of both

minimal sets, we should receive a smaller result.

The Isolating Delta Debugging algorithm is composed of two

parts; granularity and, ’program replacement’. Granularity has the

task of supplying which lines of the source code to add and remove

from our programs to generate the two minimal sets. Initially, gran-

ularity is set at two and, applied in combination with the length of

the program. The initial setting of granularity means it resembles a

binary chop algorithm and when applied divides our program in

half. After the initial application granularity is increased, decreased

or remains static as the Delta Debugging algorithm iterates. We

present a brief demonstration of granularity works using a generic

four-line program that contains a type error below;

We shall show our ill-typed program as a set of line numbers

gathered from the original broken program and converted into a

list format;

[1,2,3,4]

Our granularity currently equals 2. The initial divide splits our

list in half;

[1,2] [3,4]

Isolating Delta Debugging checks the leading half irst. These

are the line numbers we shall modify in our program.

[1,2]

The program is type checked with a blackbox compiler. The

result is that there is no type error so, we check the second half;

[3,4]

Again, type checking returns a well-typed result. We split the

granularity and set it to 1, dividing our initial list into to chunks of

one;

[1] [2] [3] [4]

Using the blackbox compiler we type check each chunk starting

from the leading list. We locate the type errors position in line 4

and, return;

Line [4] contains a type error.

The increasing and decreasing of the granularity depends on the

result category. We return a category when checking the success of

the programmodiications against our blackbox compiler; whichwe

explain in more detail in section 3.2. Zeller does not use a blackbox

compiler and as such assumes the use of a ’testing function’ [24] to

place the results into the following categories;

• The test succeeds (PASS,✓)

• The test has an error (FAIL, ×)

• The test is undetermined (UNRESOLVED, ?)

Our tool, on the other hand, categorises them slightly diferently.

Restricting the categories further due to the nature of only wanting

to discover the position of type errors;

• The test succeeds (’Well-Typed’,✓)

• The test returns a type error (’Ill-Typed’, ×)

• The test returns any other error (’Unclassiied’, ?)

Program replacement also using these categories to determine

the path the algorithm takes after each iteration. The program iles

that the Isolating Delta Debugging algorithm use are luid. In our

case, they start with the ’Ill’ and ’Well-Typed’ programs of which

we convert to our upper and lower bound programs. As we iterate

over the algorithm, the upper and lower bound programs replace

our initial programs depending on the result of the modiications.

ALGORITHM 1: Granularity and ’Program Replacement’

if ’upper bound program’ == Ill-Typed(×) && granularity == 2 then
Replace ’Ill-Typed’ result program with current ’upper bound program’.

Granularity == 2.

else if ’upper bound program’ == Well-Typed(✓) then
Replace ’Well-Typed’ result program with current ’upper bound

program’.

Granularity == 2.

else if ’lower bound program’ == Ill-Typed(×) then
Replace ’Ill-Typed’ result program with current ’lower bound program’.

Granularity == 2.

else if ’upper bound program’ == Ill-Typed(×) then
Replace ’Ill-Typed’ result program with current ’upper bound program’.

Granularity == max (granularity - 1) or 2.

else if ’lower bound program’ == Well-Typed(✓) then
Replace ’Well-Typed’ result program with current ’lower bound

program’.

Granularity == max (granularity - 1) or 2.

else
Try other half.

Keeping our terminology from the example program (section 2)

the changes seen in algorithm 1 are completed depending on the

result of type checking with the blackbox compiler.

3.2 A Blackbox Compiler

We use a compiler as a blackbox, an entity of which we only know

of the input and the output. Anything that happens within the

blackbox remains a mystery to us. Compilers naturally lend them-

selves to this usage, taking an input (source code) and, returning an

output; a successfully compiled program or error. The compiler we

chose to use as a blackbox is the Glasgow Haskell Compiler (GHC),

which is widely used by the Haskell community. As we can exploit

GHC to gather type checking information without the need to alter

the compiler itself, we can keep our tool separate. Not modifying

the compiler has many beneits; changes made by the compiler

developers will not afect the way our method works, users of our

tool can avoid downloading a specialist compiler and, do not have

the hassle of patching an existing one. Avoiding modiication of

the compiler also means that though we decided to employ Haskell

in our initial investigation, our method is not restricted to this lan-

guage, giving scope to expand to other functional languages such

as OCaml.

IFL’18, August 2019, Lowell, MA, USA J. Sharrad. O. Chitil. M. Wang.

We employ our blackbox compiler by using it as a type checker.

During each iteration of the Isolating Delta Debugging algorithm,

we determine the status of our upper and lower bound programs

as described in section 2. When using the blackbox compiler, our

tool receives the same output a programmer would when they

are using GHC. Though the result of compiling with GHC gives

a message that includes many factors, we are only interested in

if our programs are well-typed, using this information to attach

the categories we discuss in section 3.1. Using our example from

section 2, type checking both programs would give us the following

messages and applied categories;

Listing 12: Ill-Typed Initial Error Message

Occurs check: cannot construct the infinite type: a ~ [a]

....

Category: FAIL

Listing 13: Well-Typed Initial Error Message

0

Category: PASS

The Isolating Delta Debugging algorithm receives the attached

categories and uses them to determine which path to apply as pre-

sented in algorithm 1. Depending on the route taken, we modify

the source code of our programs in diferent ways, and again send

them to the blackbox compiler for further type checking before reit-

erating over the whole method again. Where our programs source

code is modiied is automated by the Isolating Delta Debugging

algorithm but, the idea of directly changing the raw code is solely

inspired by how programmers manually debug.

3.3 Source Code Manipulation

When programmers naturally debug they edit their source code di-

rectly, looking at where the error is suggested to occur and making

changes in the surrounding area. We are also directly manipulating

the source code, modifying our programs using the line numbers

determined by the Isolating Delta Debugging algorithm. One signif-

icant bonus to the strategy of directly changing the source code is

that it keeps our approach very simple. As we do not work on the

Abstract Syntax Tree (AST) we do not need to parse our source code

with each modiication, allowing us to avoid making changes to an

existing compiler or create our own parser. Not editing the AST

also means we can stay true to the programmer’s original program,

keeping personal preferences in layout intact by using empty lines

as placeholders.

Our overall concern is the inaccurate reporting of the line num-

ber a type error occurred on, and as such, our tool works on a

line-by-line based approach. As observed in section 2, we do this by

adding and removing lines of source code and, on completion of the

algorithm we are left with two programs. One program has all ill-

typed source code removed and, the other only contains well-typed

code. As we have directly modiied the source code to achieve these

two programs we can use them to ind the line number of where

our type error appears by calculating the diference between the

two.

3.4 Processing the Results

The idea is if one program is well-typed and the other ill-typed

the source of the type error lays within the variation of the two;

the relevant diference [25]. Processing the result is inherently

uncomplicated. After the Isolating Delta Debugging algorithm has

completed, two programs are left. The two inal programs are used

to create two lists generated by adding the line number of each

empty line in the program. If a line number does not make an

appearance in both of these generated lists we report it as a relevant

diference. Working on whole lines of code in which we can report

line numbers, also means we can easily evaluate how successfully

we are in locating type errors.

4 EVALUATION

In the illustration of our method, we have shown how we can

successfully locate the correct line number of a type error. However,

though positive for the example program we have used throughout,

a more thorough evaluation was needed to be undertaken to show

the strength of our method in type error locating.

We chose to evaluate our method against a benchmark of pro-

grams specially engineered to contain type errors. The programs

collated by Chen and Erwig [3] were used to assess their Counter-

Factual approach to type error debugging. In all, there are one

hundred and twenty-one programs in the CE benchmark, but not

all had what the Chen and Erwig called the ’oracle’, the foresight

of where the type error lay. As we needed to know the correct

location of where the type error occurred to evaluate accurately,

we cut all programs that did not specify the exact cause. To make

our evaluation more compact, programs that were ill-typed in sim-

ilar ways were also removed, reducing our set of test programs

to thirty. However, as we also wanted to see if our method could

report multiple type errors we took these thirty test programs and

generated a further eight hundred and seventy programs to use in

evaluation.

Our evaluation answers the following questions;

(1) When applying our method to Haskell source code that con-

tains a single type error; Do we show improvement in locat-

ing the errors compared to the Glasgow Haskell Compiler?

(Section 4.1)

(2) If we add multiple(two) type errors in our Haskell source

code; Do we show improvement in locating these errors

compared to the Glasgow Haskell Compiler? (Section 4.2)

(3) Does our method return a smaller set of type error locations?

Speciically, a single precise line number of where the type

error occurred. (Section 4.3)

Answering these questions involved creating a series of tests.

To evaluate these tests we chose to compare our approach against

GHC 8.2.2. We are using GHC as a blackbox compiler within our

own tool, but as we use it solely as a type checker we do not

have any knowledge of the line numbers it reports and, thus it

has no interference with our evaluation. GHC and our tool take

the CE benchmarks, and type checks each one; this results in a

set of suggested line numbers where the cause of the type error

could occur. To judge the success of locating the type error in the

tests we have chosen to use the same criteria as Wand [22]. Wand

states that even if we get multiple locations returned, the method is

Delta Debugging Type Errors with a Blackbox Compiler IFL’18, August 2019, Lowell, MA, USA

Figure 2: Gramarye vs GHC - Single Type Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Correct

Incorrect

Test Programs

D
is
co
ve
re
d
T
y
p
e
E
rr
or

Gramarye GHC

classed as a success if the exact location of the type error is within

these. As, both our tool and GHC can report multiple line numbers

for one type error; we use Wands criteria to allow us to take into

consideration all line numbers returned and, not just the irst.

4.1 Singular Type Error Evaluation

(1) When applying our method to Haskell source code that contains

a single type error; Do we show improvement in locating the errors

compared to the Glasgow Haskell Compiler?

The irst set of test programs contain one single type error; if the

line number reported matched the ’oracle’ response, then our result

was accurate. In igure 2, we can see an overview of the outcome.

The graph shows all thirty ill-typed programs and whether Gra-

marye and GHC correctly discovered the position of the type error.

The results of our approach were positive. Out of the thirty ill-

typed programs we accurately located 24 (80%) of the type errors,

compared to 15(50%) from GHC.

In some cases, multiple line numbers were returned but still

contained the correct errored line. We found the primary cause of

multiple line numbers was due to statements that relied on each

other or line breaks. Examples of this are If-Else or Let-In statements

or lines that wrap around; the latter of which we present below;

Listing 14: Layout over two rows

1 doRow (y:ys) r = (if y < r && y > (r-dy) then '*'

2 else ' ') : doRow r ys

In this example, our tool correctly identiies the line number even

though we are returned two to choose from but, this was not the

same for GHC, who suggests the irst line in the above program as

causing the issue. These issues caused by the programmer’s layout

decisions are one direction for future work.

In all our method using the initial evaluation criteria, has a 31%

success rate over locating type errors in Haskell source code than

GHC, but, when programming we can often end up with multiple

errors in our programs. A second evaluation of programs containing

more than one type error would be advantageous.

4.2 Multiple Type Errors Evaluation

(2) If we add multiple(two) type errors in our Haskell source code;

Do we show improvement in locating these errors compared to the

Glasgow Haskell Compiler?

In the context of our evaluation, testing multiple type errors is

represented by having more than one self-contained error within

an ill-typed program. Self-contained type errors within a program

mean we have two separate functions that do not interact with each

other, with both functions contain a single type error. In listing 15,

the irst function has an error on line 2 and the second function on

line 6, but neither type error afects the other;

Listing 15: Multiple Type Error Example

1 addList ls s = if s `elem` ls then ls else s : ls

2 v5 = addList "a" ["b"]

3

4 sumLists = sum2 . map sum2

5 sum2 [] = []

6 sum2 (x:xs) = x + sum2 xs

Listing 15, is just one of the programs we generated that con-

tains multiple type errors. We created these by merging the CE

benchmark programs. Each set of programs includes the original

source code with the addition of another CE program attached to

the bottom. In all, we generated eight hundred and seventy new

ill-typed programs to test. The success criteria for reporting an

accurate discovery of the position of a type error in an ill-typed

program that contains multiple errors is similar to what we used

for singular errors. The only diference being, that though we have

two errors per program we only need one error to be reported to

deem a success.

Table 1, shows one set of results from a merged ile. The irst

column lists the program number that we are using as the base

and the second column indexes the number of the program we

merged to the end of the source code. Under the Gramayre and

GHC columns, we use ticks and crosses to denote if either correctly

reports a type errors location, under this, we total the amount

of correct matches as a percentage, the higher of which shows a

greater success.

With this particular combination of CE benchmark programs,

we can see that Gramarye inds 50% more type error positions

than GHC. However, this is not always the case. Table 2, provides

the total results for all of our combination of programs. Column

one lists the base program, and the last two columns show the

percentage of how accurate our tool and GHC were at locating type

errors.

In total, we can see that Gramarye inds 3% fewer type errors

in our multiple programs than GHC, this is not surprising. The

Isolating Delta Debugging algorithm restricts Gramarye to always

locating just one type error, the irst it has come across. Once it

IFL’18, August 2019, Lowell, MA, USA J. Sharrad. O. Chitil. M. Wang.

has found this error, the algorithm assumes the job is complete

and does not check any further. Currently, the programmer has

to repeatedly use the tool after each implemented ix, working on

each type error separately. We feel the removal of this limitation,

would close the gap between Gramarye and GHC considerably,

however, being restricted to working on one error at a time could

also prove to be beneicial. Our evaluation of allowing a return of

only a precise line shows this is the case.

Table 1: Testing a program with two type error.

Original Program Merged Program Gramarye GHC

15 1 ✓ ✓

15 2 ✓ ✓

15 3 ✓ ×

15 4 ✓ ×

15 5 ✓ ✓

15 6 ✓ ✓

15 7 ✓ ×

15 8 × ×

15 9 ✓ ×

15 10 ✓ ×

15 11 ✓ ✓

15 12 ✓ ✓

15 13 ✓ ✓

15 14 ✓ ×

15 16 ✓ ×

15 17 ✓ ✓

15 18 ✓ ✓

15 19 ✓ ×

15 20 ✓ ✓

15 21 ✓ ×

15 22 × ×

15 23 ✓ ×

15 24 ✓ ✓

15 25 ✓ ×

15 26 ✓ ×

15 27 × ×

15 28 ✓ ✓

15 29 ✓ ✓

15 30 ✓ ×

Total 89.66% 44.83%

4.3 Precise Type Error Evaluation

(3) Does our method return a smaller set of type error locations? Specif-

ically, a single precise line number of where the type error occurred.

Though our criteria for success allowed us to check multiple re-

turned line numbers for the correct type error position, reporting

large amount of locations to the programmer is not ideal. As we

aimed to return just a singular line number as the cause of the

type error, an additional evaluation criteria allowed us to pinpoint

how speciic our tool was compared to GHC. All of the programs

we tested had a single type error on a distinct line; our new rule

Table 2: Overall testing of programs with two type error.

Program Gramarye GHC

1 72.41% 96.55%

2 65.52% 96.55%

3 68.97% 96.55%

4 75.86% 51.72%

5 68.97% 96.55%

6 72.41% 93.19%

7 65.52% 48.28%

8 62.07% 48.28%

9 75.86% 55.17%

10 58.62% 93.10%

11 65.52% 93.10%

12 68.97% 96.55%

13 68.97% 96.55%

14 75.86% 00.00%

15 89.66% 44.83%

16 65.52% 51.72%

17 68.97% 96.55%

18 65.52% 93.10%

19 82.76% 51.72%

20 68.97% 96.55%

21 82.76% 44.83%

22 31.03% 48.28%

23 72.41% 51.72%

24 55.17% 89.66%

25 68.97% 96.55%

26 72.41% 55.17%

27 65.52% 51.72%

28 65.52% 89.66%

29 65.52% 96.55%

30 65.52% 51.72%

Total 68.39% 71.03%

speciied that if either Gramarye or GHC returned a single accurate

location, then they were classed as having a "precise success".

Table 3 shows all the program iles that had a single type error;

a tick denotes if either Gramarye or GHC accurately reports a

single line number as being the cause of the type error. A report

of multiple lines means a cross is displayed, even if a report of a

correctly located type error was within them.

Our method had a positive outcome when locating a single line

as the cause of the fault. Gramarye reported accurately 16 times

(53%), with, GHC doing slightly worse at 12 times(40%).

When evaluating programs that included multiple self-contained

type errors, we had a slightly diferent criteria, judging "precise

success" under the following rules;

• A single line number containing the location of error one.

1 addList ls s = if s `elem` ls then ls else s : ls

2 v5 = addList "a" ["b"]

3

4 sumLists = sum2 . map sum2

5 sum2 [] = []

6 sum2 (x:xs) = x + sum2 xs

Delta Debugging Type Errors with a Blackbox Compiler IFL’18, August 2019, Lowell, MA, USA

Table 3: "precise success" on single type errors.

Program Gramarye GHC

1 ✓ ✓

2 × ✓

3 ✓ ×

4 × ×

5 × ✓

6 × ✓

7 × ×

8 × ×

9 ✓ ×

10 ✓ ×

11 × ✓

12 ✓ ✓

13 ✓ ✓

14 × ×

15 × ×

16 ✓ ×

17 ✓ ×

18 ✓ ✓

19 × ×

20 ✓ ✓

21 ✓ ×

22 × ×

23 ✓ ×

24 × ×

25 ✓ ✓

26 ✓ ×

27 × ×

28 ✓ ✓

29 × ✓

30 ✓ ×

Total 53.33% 40.00%

• A single line number containing the location of error two.

1 addList ls s = if s `elem` ls then ls else s : ls

2 v5 = addList "a" ["b"]

3

4 sumLists = sum2 . map sum2

5 sum2 [] = []

6 sum2 (x:xs) = x + sum2 xs

• Two line numbers containing the location of both error one

and two.

1 addList ls s = if s `elem` ls then ls else s : ls

2 v5 = addList "a" ["b"]

3

4 sumLists = sum2 . map sum2

5 sum2 [] = []

6 sum2 (x:xs) = x + sum2 xs

All other results, even those that include the correct location,

are recorded as failing the "precise success" criteria of discovering

type errors. Table 4 represents the test programs that contained

two type errors. The name of the original program along with the

percentage of type error locations deemed to be a "precise success"

are shown.

Table 4: "precise success" on programs with two type error.

Program Gramarye GHC

1 48.28% 37.93%

2 44.83% 34.48%

3 48.28% 6.90%

4 51.72% 00.00%

5 44.83% 41.38%

6 37.93% 34.48%

7 44.83% 00.00%

8 41.38% 00.00%

9 51.72% 00.00%

10 48.28% 00.00%

11 48.28% 37.93%

12 48.28% 48.28%

13 48.28% 37.93%

14 34.48% 00.00%

15 13.79% 00.00%

16 44.83% 00.00%

17 51.72% 00.00%

18 41.38% 31.03%

19 10.34% 00.00%

20 44.83% 34.48%

21 72.41% 00.00%

22 20.69% 00.00%

23 41.38% 00.00%

24 37.93% 00.00%

25 48.28% 34.48%

26 48.28% 00.00%

27 44.83% 3.45%

28 41.38% 34.48%

29 37.93% 34.48%

30 48.28% 00.00%

Total 42.99% 15.06%

Analysing Table 4 we can see that our method is again successful

in reporting the correct type error location using just one line

number with 43% accuracy compared to GHC at 15%. GHC tends

to report as many line numbers it feels are associated with the type

error, very much like slicing. However, our evaluation shows that

it may be more useful and accurate for the programmer to receive

only one location at a time.

Overall, our evaluation has proven positive towards our method

of type error debugging. From the testing, our strength lies in

the reporting of singular type errors, be that one per program or

the reporting of one instance of type error amongst many. Our

results compared to GHC when testing more than one type error

in a program suggests an algorithm that improves upon locating

multiple types errors at a time could be beneicial. However, we

believe that several locations for one error is an unnecessary burden

IFL’18, August 2019, Lowell, MA, USA J. Sharrad. O. Chitil. M. Wang.

on the programmer and, a preference of accurate location over broad

suggestion is preferential.

5 RELATED WORK

Type error debugging has taken many forms over the past thirty

years so; we will not be able to cover them all of them. Some

core categories within type error debugging include; Slicing [7,

14, 18], Interaction [4, 5, 15, 16, 21], Type Inference Modiication

[1, 11] and, working with Constraints [13, 27]. However, these

solutions are complicated to implement. Some expect reliance on

the compiler developers to accept the changes, for the programmer

to patch their version or to use a particular compiler. Others, do

not provide an implementation to use and in the cases where there

is an implementation, it is not maintained to work with the latest

version of the programming language [9]. We, however, counter

these by providing our approach within a tool, used separately from

the compiler that employs the Delta Debugging algorithm to locate

the type errors.

Delta Debugging, the name for two algorithms, one that sim-

pliies and another that isolates, sparked our interest due to it’s

closeness to debugging techniques that programmers use[6, 24ś26].

Demonstrating the application of the Simplifying Delta Debug-

ging algorithm with the Liquid Haskell type checker [19]. Their

approach difers from ours in that we concentrate on the Isolating

Delta Debugging technique. Combining the algorithm with direct

modiication of the programs source code and, with an unmodiied

Glasgow Haskell Compiler, using its type checker as a blackbox.

Prior works that mention using the idea of a black box include;

using the compiler’s type inferencer as a black box to construct

a type tree to use to debug the program [20] and, having an SMT

solver as a blackbox to return the satisiable set of constraints to

show type errored expressions[12]. SEMINAL, a tool which uses

the type checker as a black box is the closest to our approach

[9, 10]. Unlike our method though, SEMINAL along with previous

solutions of using a blackbox compiler, either make modiications

to an existing compiler or present an entirely new one. In our

approach, we do neither, only passing it source code and gathering

the results without any interference from us. Though SEMINAL is

also passing information, a patch is required for it to work with the

OCaml compiler.

Another diference between our tool, Gramarye, and SEMINAL

is that SEMINAL modiies the Abstract Syntax Tree (AST), unlike

our strategy of working directly on the source code itself. Other

approaches that talk about altering source code are a constraint-free

tool inspired by SEMINAL, but though it refers to source code mod-

iication they to work with the AST [14]. Another tool TypeHope

also discusses changing the source code of a program to stay true

to how a programmer debugs. However, again, the solution edits

the AST [2]. At this point, as far as the authors know, modifying

source code directly is a new approach in the type error debugging

ield.

6 CONCLUSION AND FUTUREWORK

Our method combines the Isolating Delta Debugging algorithm, a

black box compiler and direct source code modiication to locate

type errors. Our tool Gramarye implements the method for Haskell

using the Glasgow Haskell compiler as a black box. From our eval-

uation, we have gathered positive results that support our method

for type error debugging. For single type errors our tool gives a 31%

improvement over GHC. However, for two separate type errors in

a single program GHC was 3% more successful. When applied to

our aim of returning only a single line number for type errors, our

method proved positive with 53% for locating singular type errors

and, 43% when applied to a program that contained two type errors.

A signiicant practical advantage of our method is that our tool

Gramarye has only a small GHC-speciic component and thus can

easily be modiied for other programming languages and compilers.

In the future we will be looking at were Gramarye did well and

what its points of failure were. We will then use the outcome of the

investigation to improve our algorithm for type error debugging.

We will study closer the non-determinism of our method: can we

sometimes determine whether one choice is better than another?

After we have improved our method to determine the correct line

number, we can easily increase the granularity of the tool further

to eventually modify programs by single characters instead of lines,

thus identifying subexpressions that cause type errors. On the

theoretical side, there is clearly a close link between our method

and methods described in the literature that perform type error

slicing based on minimal unsolvable constraint sets. We want to

formalise that link.

Additional improvements to the tool outside of the algorithm

would also be useful. An improved GUI, though not necessary for

seeing if our approach is beneicial, does open up the options of

not only combining with other methodologies that rely on inter-

action but also testing with real-life participants. We also would

like to conduct empirical research of our solution in combination

with evaluating against collected student programs to cement our

strategy.

REFERENCES
[1] Karen L Bernstein and Eugene W Stark. 1995. Debugging type errors (full

version). Technical Report. State University of New York at Stony Brook,
Stony Brook, NY 11794-4400 USA. https://pdfs.semanticscholar.org/814c/
164c88ba7dd22e7e501cdd1a951586a3117b.pdf

[2] Bernd Braßel. 2004. Typehope: There is hope for your type errors. In Int. Workshop
on Implementation of Functional Languages. https://www.informatik.uni-kiel.de/
~mh/wlp2004/inal_papers/paper13.ps

[3] Sheng Chen and Martin Erwig. 2014. Counter-factual typing for debugging type
errors. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014.
583ś594. https://doi.org/10.1145/2535838.2535863

[4] Sheng Chen and Martin Erwig. 2014. Guided Type Debugging. In Functional and
Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan,
June 4-6, 2014. Proceedings. 35ś51. https://doi.org/10.1007/978-3-319-07151-0_3

[5] Olaf Chitil. 2001. Compositional Explanation of Types and Algorithmic De-
bugging of Type Errors. In Proceedings of the Sixth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy, Sep-
tember 3-5, 2001. 193ś204. https://doi.org/10.1145/507635.507659

[6] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In
27th International Conference on Software Engineering (ICSE 2005), 15-21 May 2005,
St. Louis, Missouri, USA. 342ś351. https://doi.org/10.1145/1062455.1062522

[7] Christian Haack and Joe B. Wells. 2004. Type error slicing in implicitly typed
higher-order languages. Sci. Comput. Program. 50, 1-3 (2004), 189ś224. https:
//doi.org/10.1016/j.scico.2004.01.004

[8] Gregory F. Johnson and Janet A. Walz. 1986. A Maximum-Flow Approach to
Anomaly Isolation in Uniication-Based Incremental Type Inference. InConference
Record of the Thirteenth Annual ACM Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, USA, January 1986. 44ś57. https://doi.
org/10.1145/512644.512649

[9] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. 2007.
Searching for type-error messages. In Proceedings of the ACM SIGPLAN 2007

https://pdfs.semanticscholar.org/814c/164c88ba7dd22e7e501cdd1a951586a3117b.pdf
https://pdfs.semanticscholar.org/814c/164c88ba7dd22e7e501cdd1a951586a3117b.pdf
https://www.informatik.uni-kiel.de/~mh/wlp2004/final_papers/paper13.ps
https://www.informatik.uni-kiel.de/~mh/wlp2004/final_papers/paper13.ps
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1007/978-3-319-07151-0_3
https://doi.org/10.1145/507635.507659
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1016/j.scico.2004.01.004
https://doi.org/10.1016/j.scico.2004.01.004
https://doi.org/10.1145/512644.512649
https://doi.org/10.1145/512644.512649

Delta Debugging Type Errors with a Blackbox Compiler IFL’18, August 2019, Lowell, MA, USA

Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. 425ś434. https://doi.org/10.1145/1250734.
1250783

[10] Benjamin S. Lerner, DanGrossman, andCraig Chambers. 2006. Seminal: searching
for ML type-error messages. In Proceedings of the ACM Workshop on ML, 2006,
Portland, Oregon, USA, September 16, 2006. 63ś73. https://doi.org/10.1145/1159876.
1159887

[11] Bruce J McAdam. 1999. On the uniication of substitutions in type inference.
Lecture notes in computer science 1595 (1999), 137ś152. https://link.springer.com/
chapter/10.1007/3-540-48515-5_9

[12] Zvonimir Pavlinovic. 2014. General Type Error Diagnostics Us-
ing MaxSMT. (2014). https://pdfs.semanticscholar.org/1c14/
7bc9f51cc950596dbc3e7cc5121202d160da.pdf

[13] Vincent Rahli, Joe B. Wells, John Pirie, and Fairouz Kamareddine. 2015. Skalpel:
A Type Error Slicer for Standard ML. Electr. Notes Theor. Comput. Sci. 312 (2015),
197ś213. https://doi.org/10.1016/j.entcs.2015.04.012

[14] Thomas Schilling. 2011. Constraint-Free Type Error Slicing. In Trends in
Functional Programming, 12th International Symposium, TFP 2011, Madrid,
Spain, May 16-18, 2011, Revised Selected Papers. 1ś16. https://doi.org/10.1007/
978-3-642-32037-8_1

[15] Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic witnesses for
static type errors (or, ill-typed programs usually go wrong). In Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18-22, 2016. 228ś242. https://doi.org/10.1145/
2951913.2951915

[16] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. 2003. Interactive type
debugging in Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell,
Haskell 2003, Uppsala, Sweden, August 28, 2003. 72ś83. https://doi.org/10.1145/
871895.871903

[17] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. 2004. Improving type
error diagnosis. In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2004, Snowbird, UT, USA, September 22-22, 2004. 80ś91. https://doi.org/10.1145/
1017472.1017486

[18] Frank Tip and T. B. Dinesh. 2001. A slicing-based approach for locating type
errors. ACM Trans. Softw. Eng. Methodol. 10, 1 (2001), 5ś55. https://doi.org/10.
1145/366378.366379

[19] A Tondwalkar. 2016. Finding and Fixing Bugs in Liquid Haskell. Mas-
ter’s thesis. University of Virginia. https://pdfs.semanticscholar.org/79b4/
22959847253c40af25c228205372d9ebc60.pdf

[20] Kanae Tsushima and Kenichi Asai. 2012. An Embedded Type Debugger. In
Implementation and Application of Functional Languages - 24th International
Symposium, IFL 2012, Oxford, UK, August 30 - September 1, 2012, Revised Selected
Papers. 190ś206. https://doi.org/10.1007/978-3-642-41582-1_12

[21] Kanae Tsushima and Olaf Chitil. 2014. Enumerating Counter-Factual Type Error
Messages with an Existing Type Checker. In 16th Workshop on Programming and
Programming Languages, PPL2014. http://kar.kent.ac.uk/49007/

[22] Mitchell Wand. 1986. Finding the Source of Type Errors. In Conference Record of
the Thirteenth Annual ACM Symposium on Principles of Programming Languages,
St. Petersburg Beach, Florida, USA, January 1986. 38ś43. https://doi.org/10.1145/
512644.512648

[23] Baijun Wu and Sheng Chen. 2017. How Type Errors Were Fixed and What
Students Did?. In ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications.

[24] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Software Engineering - ESEC/FSE’99, 7th European Software Engineering Con-
ference, Held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Toulouse, France, September 1999, Proceedings. 253ś267.
https://doi.org/10.1007/3-540-48166-4_16

[25] Andreas Zeller. 2009. Why Programs Fail - A Guide to Systematic Debug-
ging, 2nd Edition. Academic Press. http://store.elsevier.com/product.jsp?isbn=
9780123745156&pagename=search

[26] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183ś200. https://doi.org/
10.1109/32.988498

[27] Danfeng Zhang, Andrew C Myers, Dimitrios Vytiniotis, and Simon Peyton-Jones.
2015. Diagnosing Haskell type errors. Technical Report. Technical Report http://hdl.
handle. net/1813/39907, Cornell University. https://pdfs.semanticscholar.org/
d32f/81a5c1706e225e2255b72c1e4b41f799e8f1.pdf

Received May 2018

https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1159876.1159887
https://doi.org/10.1145/1159876.1159887
https://link.springer.com/chapter/10.1007/3-540-48515-5_9
https://link.springer.com/chapter/10.1007/3-540-48515-5_9
https://pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf
https://pdfs.semanticscholar.org/1c14/7bc9f51cc950596dbc3e7cc5121202d160da.pdf
https://doi.org/10.1016/j.entcs.2015.04.012
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/1017472.1017486
https://doi.org/10.1145/1017472.1017486
https://doi.org/10.1145/366378.366379
https://doi.org/10.1145/366378.366379
https://pdfs.semanticscholar.org/79b4/22959847253c40aff25c228205372d9ebc60.pdf
https://pdfs.semanticscholar.org/79b4/22959847253c40aff25c228205372d9ebc60.pdf
https://doi.org/10.1007/978-3-642-41582-1_12
http://kar.kent.ac.uk/49007/
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/512644.512648
https://doi.org/10.1007/3-540-48166-4_16
http://store.elsevier.com/product.jsp?isbn=9780123745156&pagename=search
http://store.elsevier.com/product.jsp?isbn=9780123745156&pagename=search
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://pdfs.semanticscholar.org/d32f/81a5c1706e225e2255b72c1e4b41f799e8f1.pdf
https://pdfs.semanticscholar.org/d32f/81a5c1706e225e2255b72c1e4b41f799e8f1.pdf

	Abstract
	1 Introduction
	1.1 Variations of an Ill-Typed Programs
	1.2 Our Method

	2 An Illustration of Our Method
	3 Implementation
	3.1 Delta Debugging
	3.2 A Blackbox Compiler
	3.3 Source Code Manipulation
	3.4 Processing the Results

	4 Evaluation
	4.1 Singular Type Error Evaluation
	4.2 Multiple Type Errors Evaluation
	4.3 Precise Type Error Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

