
Implementing Functional Logic Programs by
Translation into Purely Functional Programs

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

vorgelegt von
Dr. phil. Dipl.-Inform. Bernd Braßel

Kiel
2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250311645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

für Silvi

Erstgutachter: Prof. Dr. Michael Hanus
Zweitgutachter: Prof. Dr. Sergio Antoy
Tag der mündlichen Prüfung: 20.10.2011
Druck genehmigt am: 20.10.2011 durch Prof. Dr. Thomas Wilke

in Vertretung des Dekans

4

Contents

1 Introduction and Motivation 7
1.1 Declarative Programming languages 7

1.1.1 Functional Programming Languages 8
1.1.1.1 Abstract Data Types and Pattern Matching . . 8
1.1.1.2 Higher Order . 11
1.1.1.3 Call by Value, Name and Need 14

1.1.2 Functional Logic Languages 16
1.1.2.1 Non-Deterministic Operations 17
1.1.2.2 Free Variables and Narrowing 17
1.1.2.3 Call-Time and Run-Time Choice 19
1.1.2.4 Controlling Search 21

1.2 Implementing Functional Logic Languages 24
1.2.1 Transformation to Functional Languages 25

1.3 Debugging Functional Logic Programs 27
1.3.1 Related Work . 27
1.3.2 The Approach Presented in this Work 29

1.4 Content of this Work . 30

2 Functional Logic Programs 31
2.1 Signatures, Expressions and Programs 31
2.2 Natural Semantics of Case-Based Programs 34

2.2.1 Flat Expressions . 34
2.2.2 Heaps and Configurations 35
2.2.3 Statements and their Derivation 36
2.2.4 Correspondence to the Original Approach 38
2.2.5 A More Abstract Notion of Semantics 40

2.3 Modifications of the Semantics 41
2.3.1 Changing Rule (VarExp) 42
2.3.2 Elimination of (VarCons) 43

3 Elimination of Free Variables 47
3.1 Treatment of Variable Chains . 48
3.2 Elimination of Free Variables . 52

3.2.1 Keeping Track of Generator Updates 53
3.2.2 Replacing Free Variables by Generators 54
3.2.3 Reintroduction of Free Variables 59

3.3 Summary . 64

5

6 CONTENTS

4 Uniform Programs 69
4.1 Case Lifting . 69
4.2 Introduction of Uniform Programs 76
4.3 Flat Uniform Programs . 78
4.4 Excursus Term-Graph Rewriting 79
4.5 Proving Soundness . 83

4.5.1 From Uniform to Flat Uniform 84
4.5.2 From Flat Uniform to Uniform 85

4.6 Summary . 87

5 Eliminating Non-Determinism 91
5.1 Informal Presentation of the Transformation 91

5.1.1 Naive Functional Encoding of Non-Determinism 92
5.1.2 Combining Laziness and Call-Time Choice 93

5.2 Formal Definition of Transformation 96
5.2.1 Head Normal Forms and Transformation of Goals 103

5.3 Proof of Soundness . 105
5.3.1 Correctness . 105
5.3.2 Completeness . 110

5.4 Summary . 115

6 Advanced Topics and Benchmarks 117
6.1 Functional Programs . 119

6.1.1 First-Order Programs . 119
6.1.2 Higher-Order Programs 119

6.2 Collecting Sets of Choices . 122
6.2.1 Depth-First Search . 125
6.2.2 Breadth-First Search . 126
6.2.3 Iterative Depth-First Search 127
6.2.4 Parallel Search . 128

6.3 Failing Computations . 129
6.4 Sharing Across Non-Determinism 132
6.5 Recursive let bindings . 133
6.6 Encapsulated Search . 137

6.6.1 Primitives to Provide Encapsulated Search 139
6.6.2 Set Functions . 141

6.7 Free Variables Revisited . 147
6.8 Adding Constraints . 149

6.8.1 Unifying Simple Data Types 149
6.8.2 Complex Data Types . 154

6.9 Drawbacks of the Presented Approach 157
6.10 Debugging . 158

6.10.1 Debugging Functional Programs with Oracle 158
6.10.2 Debugging Functional Logic Programs with Oracle 163
6.10.3 Related Work for Debugging 166

7 Conclusion 169

Chapter 1

Introduction and
Motivation

1.1 Declarative Programming languages

The structure and components of the first programming languages were dictated
by the architecture of computers. It was the human mind which had to bend to
the peculiarities of the machine. When basic technical problems were solved a
reverse current began to get stronger. It was no longer the machine which was
hardly able to do as commanded, but more and more it was the human mind
that refused to be wrapped around the complex systems to be realized. There
began a search for formalisms which would allow to program computers on a
high and expressive level of abstraction. Especially, this included abstraction
from tedious details such as the exact order in which commands would be issued
and abstraction from the exact way in which complex data structures were
distributed in the machine’s memory. And finally abstraction from the concept
of sequential computation at all. In theory the same high-level specification
could be the source to derive efficient low-level programs for sequential or parallel
machines alike.

One effect of the search was the birth of those programming languages which
we call declarative. In a declarative language, the programmer does not state
how to compute the solution to his problem step by step. He does not dictate
which part of that solution is to be stored how and where. Rather, he gives an
abstract definition of the problem itself and leaves the derivation of efficient ma-
chine code to the compiler. Currently, the automatic generation of efficient code
for parallel machines is still the subject of research. Nevertheless, substantial
progress has been achieved in the field of high-level declarative programming
languages, and these days we can make use of systems that have every right to
be attributed as industrial strength compilers.

From the beginning there have been two main streams in the field of declar-
ative programming: functional programming and logic programming. A third
stream tried to unify these paradigms and we will call this latter stream func-
tional logic programming. It is this stream that the presented work is part
of. Before we narrow down the subject of the presented work in Section 1.4,
we first give a short introduction to the various basic concepts functional logic

7

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

programming languages consist of.

1.1.1 Functional Programming Languages

Historically, functional programming languages are considered to be based on
the λ-calculus [Church, 1941] which in turn can be seen as a variant of com-
binatory logic [Schönfinkel, 1924]. Both were introduced as abstract models
to capture the basic aspects of computation. Especially, the resulting models
should not depend on the operational conception of a concrete machine and its
set of instructions. The goal was to approximate the tools humans have been us-
ing for centuries when aiming for precision: the formal concepts of mathematics
and logic.

For any transfer of mathematical concepts to computer science there is a
trade off between expressiveness and algorithmic complexity. In order to achieve
a compilation into efficient machine code, one has to find suitable restrictions
on the mathematical constructs allowed. Functional programming is one set of
restrictions found suitable for practice. We will consider this set of restrictions
by example in this section.

Historically, the first functional language to note was LISP [McCarthy, 1978]
whose most popular successor today is Scheme [Dybvig, 2002]. Apart from
Scheme there are several functional languages in current use, most noteworthy
Erlang [Armstrong et al., 1996], ML [Milner et al., 1990] and its successors,
and last but not least Clean [Koopman et al., 2001] and Haskell [Peyton Jones,
2003].

From the above languages, both Clean and Haskell support all of the fea-
tures we would like to see included in the functional subset of a declarative pro-
gramming logic language: static type systems, pattern matching, higher-order
functions, and lazy evaluation. We will first give some introductory examples
which reflect these general concepts of functional programming languages. Then
we will give a short discussion of those features. For our examples we will use
the syntax of Haskell.

1.1.1.1 Abstract Data Types and Pattern Matching

The first thing to note about modern functional languages is that they mostly
operate on abstract data types1, see, e.g., [Wirsing, 1990] for a survey of the
according theory.

Informally, an abstract data type has three parts: 1) the name of the type
2) a set of operations used on elements of the type and 3) a set of equations
defining the most important properties of the operations. Most often, a subset
of the operations can be identified called the constructors and selectors of the
type.

The functional languages considered here do not support the declaration of
equations for the operations on algebraic data types.2 There has been, however,

1Note that current compilation systems for functional programming languages may differ
considerably in the possible definitions of data types. Indeed type (inference) systems can be
considered to be one of the most active research areas in the field. We will only consider very
basic definitions and refer the interested reader to [Pierce, 2002] for an introductory survey of
the topic.

2There are, however, compilation systems for this purpose which go beyond mere toy
implementations, see for instance the Maude programming language [Clavel et al., 2007]. The

1.1. DECLARATIVE PROGRAMMING LANGUAGES 9

some work in testing equational properties at run-time in Haskell, e.g., by ran-
dom data [Claessen and Hughes, 2000] or by reporting the violation of so called
assertions [Chitil and Huch, 2007].

All the canonical constructors and selectors of an abstract data type in the
functional programming language Haskell are introduced in a single data decla-
ration. The resulting type is the sum of different constructors. Each constructor
may constitute a product of different types, including the one it is constructing
(type recursion), including variables for arbitrary types (polymorphism) and
including functional types (higher order).

Example 1.1.1 (Data Declarations in Haskell) The simplest data decla-
ration possible contains only a single constructor which has no arguments.

data Success = Success

Note that the declaration introduces two names which are part of different name
spaces: the name of the type Success and the name of its only constructor
Success. In Haskell it is mandatory that the elements of both name spaces are
capitalized.

An example for a type constituted by a sum of constructors is:

data Bool = True | False

Both constructors, True and False, are without argument (also called constants),
and together they constitute all of the possibilities for type Bool.

The following type has a constructor which constitutes a product of other
types (whose declarations are omitted):

data Date = Date Day Month Year

Each Date consists of three independent components. For types with only a single
constructor, Haskell supports a light-weight approach called tuples, i.e., there is
no need for a declaration. For example, instead of (Date 1 May 2008) we could
use a tuple (1,May,2008) and instead of Success we could employ the empty tuple
denoted by ().

An example for a type which features sum, product and both recursion and
polymorphism is:

data List a = Nil | Cons a (List a)

The “a” in this declaration denotes that (List a) is defined for all types, e.g.,
there are lists of Boolean values (List Bool) and lists of dates (List Date).
Moreover, the second argument of Cons is again a list — the type is recursive.
This has the effect that, e.g., (Cons True Nil) and (Cons True (Cons False Nil))

are both legitimate values of type (List Bool). Lists can therefore be of arbitrary
length.

Lists are a central data structure in functional programming. (The name
LISP was derived from “List Processing Language”.) Haskell therefore supports
syntactic sugar for lists, i.e., the constructor Nil is written as [], (Cons x y)

is written as x:y and complete lists like (True:(False:[])) can be written as
[True,False]. Likewise, the type of a list of Boolean values can be written as
[Bool].

underlying paradigm of Maude is neither functional nor logic programming in the classic sense
but algebraic specification. It is, however, beyond the scope of this work to go into the details
of how this paradigm is related to functional logic programming.

10 CHAPTER 1. INTRODUCTION AND MOTIVATION

Finally, a type with a higher-order argument is:

data Set a = Finite [a] | Infinite (a → Bool)

With this data type we could implement finite sets with lists but could also provide
the characteristic function defining a set. We will describe higher order in more
detail in Section 1.1.1.2.

There are many more possibilities to define data structures in current ver-
sions of Haskell, for example records and existential types [Peyton Jones, 2003],
generalized algebraic data types (GADTs) [Peyton Jones et al., 2006], higher-
rank polymorphism [Peyton Jones et al., 2007]. The language Clean extends the
setting with uniqueness typing [Koopman et al., 2001]. We will not consider
any such extensions in this work. Indeed we will not consider types at all as far
as possible.

For any operation definable in Haskell one can also declare on which type
the operation is defined. This is done by a so called type signature. Such a
signature consists of the name of an operation and the key symbol “::” followed
by a functional type expression.

Example 1.1.2 (Type Signatures) The Boolean negation has the signature:

not :: Bool → Bool

The first element and the rest of a list are retrieved by the operations head and
tail, respectively, which are of the type:

head :: [a] → a

tail :: [a] → [a]

Functions with more than one argument, e.g., the Boolean “if and only if” have
a type like this:

iff :: Bool → Bool → Bool

Type signatures may be omitted and can in most cases be inferred.

Operations are defined by rules of the form “f p1 . . . pn = e” where f is
a function symbol and the p1, . . . , pn form patterns. A pattern consists only
of constructor symbols and variables and an important restriction is that each
variable may appear only once in a pattern. During evaluation the patterns are
considered to choose among the different rules for a given function symbol. This
choice of rules is called pattern matching. The right-hand side e of a rule may
contain constructor as well as function symbols and also those variables which
were introduced in the pattern.

Example 1.1.3 (Pattern Matching for Boolean Functions) Functions on
the type Bool (Example 1.1.1) like Boolean negation and xor could be written in
Haskell as follows:

not :: Bool → Bool

not True = False

not False = True

xor :: Bool → Bool → Bool

xor True x = not x

xor False x = x

1.1. DECLARATIVE PROGRAMMING LANGUAGES 11

When, e.g., the function xor is applied to the values True and False, as in
the expression (xor True False), due to pattern matching the first rule of xor

is chosen. According to that rule’s definition the result is (not False), which
further evaluates to True due to pattern matching for the rules of not.

Instead of the various loop constructs known from non-declarative programming
languages, functional languages employ the concept of recursion.

Example 1.1.4 (Pattern Matching and Recursive Function) As lists are
of arbitrary length, cf. Example 1.1.1, two lists are concatenated by first recur-
sively stepping through the first list until a final constructor [] is found.

app [] ys = ys

app (x:xs) ys = x : (app xs ys)

A simple example for recursive evaluation in accordance with pattern matching
is the following evaluation. (Remember that [1,2] is a shortcut for (1:(2:[])).

app [1,2] [3,4]

= 1 : app [2] [3,4]

= 1 : 2 : app [] [3,4]

= 1 : 2 : [3,4]

As expected, the result is equal to [1,2,3,4].

1.1.1.2 Higher Order

An important feature of functional languages is the possibility to define func-
tions which take another function as argument or, likewise, compute a new
function as result. This possibility was the main idea behind combinatory logic
[Schönfinkel, 1924] and the λ-calculus [Church, 1941]. Accordingly, all of the
functional languages introduced in Section 1.1.1 feature higher-order functions.

Example 1.1.5 (Higher-Order Operation)
Two standard examples for higher-order functions on lists are map and foldr.
The function map applies the given function to each element of the given list and
can be defined in Haskell as follows:

map :: (a → b) → [a] → [b]

map _ [] = []

map f (x:xs) = f x : map f xs

For example, for the expression (map not [True,False]) we have:

map not [True,False] = [not True,not False] = [False,True]

The declaration of function foldr looks very abstract at first glance and its type
seems not to convey much information:

foldr :: (a → b → b) → b → [a] → b

foldr _ e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

However, there is a close correspondence between the structure of lists and the
definition of foldr that is best seen when using the list definition by Cons and
Nil:

12 CHAPTER 1. INTRODUCTION AND MOTIVATION

foldr _ e Nil = e

foldr f e (Cons x xs) = f x (foldr f e xs)

Each constructor Cons is replaced with the first argument, each Nil is replaced
by the second. Therefore, we have for the application of foldr on the arguments
xor, True and the list (Cons True (Cons False Nil)):

foldr xor True (Cons True (Cons False Nil)) =
(xor True (xor False True)) = False

In the above examples, there is the use of “_”, e.g., in the left-hand side of
the rule map _ [] =[]. This is a sign for an anonymous variable in Haskell. In
other words, an equivalent formulation for the rule is map x [] =[] and the _
is an explication of the fact that the variable x does not appear on the right-
hand side of the rule. Haskell supports another kind of anonymous declaration:
lambda expressions. A lambda expression declares a function without giving it
an explicit name. This is especially useful for higher-order programming, for
example the rule “reverse=foldr (λx y → app y [x]) []” defines a function
which computes the reversed list of the given argument. Depending on the
point of view you can either replace all lambda expressions by named functions
(a procedure called lambda lifting [Johnsson, 1985]) or eliminate all named
functions by lambda expressions (as required to operate in the pure lambda
calculus). In the following we will take the first approach and will thereafter
not regard lambda expressions any longer.

Example 1.1.6 (Lambda Lifting) Instead of the program

reverse :: [a] → [a]

reverse = foldr (λ x y → app y [x]) []

an equivalent “lambda-lifted” program would be:

reverse :: [a] → [a]

reverse = foldr addBehind []

addBehind :: [a] → [a] → [a]

addBehind x y = app y [x]

Because of the possibility to eliminate lambda expressions, we may use them in
examples but not include them in the formal definitions of programs in Chap-
ter 2. For the same reason we will not introduce constructs like “list comprehen-
sion”, “do notation”, the anonymous “_” patterns and other forms of syntactic
extensions of Haskell, see [Peyton Jones, 2003] for a definition of these terms.

But we will go even further than eliminating lambda in the following. Most
of the time we will assume higher-order features eliminated altogether. The
according process is called defunctionalization as introduced in [Reynolds, 1972].
In this process new constructors are introduced for each function symbol which
may appear as higher-order arguments to other functions. Such arguments
are called “partially applied” as will be understandable when considering the
following example.

Example 1.1.7 (Partial Application) Reconsider the programs from exam-
ples 1.1.5 and 1.1.6. In the definition of reverse the function addBehind is

1.1. DECLARATIVE PROGRAMMING LANGUAGES 13

partially applied. Indeed, it is applied to zero arguments when passed as an ar-
gument to the higher-order function foldr. But — a bit less obvious — foldr

is also partially applied to only two of its required three arguments.

In addition to new constructors for partially applied functions, defunction-
alization also involves the introduction of a new function apply.

Example 1.1.8 (Defunctionalization) For the collected programs of exam-
ples 1.1.5-1.1.6 the result of defunctionalization looks as follows.

foldr _ e [] = e

foldr f e (x:xs) = apply (apply f x) (foldr f e xs)

reverse = Foldr2 AddBehind0 []

apply AddBehind0 x = AddBehind1 x

apply (AddBehind1 x) y = addBehind x y

apply (Foldr2 x y) z = foldr x y z

As an example derivation consider (reverse [True]), first in the context of the
original higher-order program:

reverse [True] = foldr addBehind [] [True]

= addBehind True (foldr addBehind [] [])

= addBehind True []

= ...

= [True]

In the transformed program, the expression to be evaluated does also have to be
transformed and we get:

apply reverse [True]

= apply (Foldr2 AddBehind0 []) [True]

= foldr AddBehind0 [] [True]

= apply (apply AddBehind0 True) (foldr AddBehind0 [] [])

= apply (AddBehind1 True) (foldr AddBehind0 [] [])

= addBehind True (foldr AddBehind0 [] [])

= addBehind True []

= ...

= [True]

The astute reader might have noticed that we have left out type signatures
in the transformed program above. This is no coincidence, as the resulting
program is not well typed with regard to Haskell’s type system.3 But as we
have mentioned in Section 1.1.1.1, we will not be concerned with types in this
work. Indeed, we will from now on be concerned with first-order programs,
with the understanding that this is not a principle restriction because of the
possibility to transform higher to first order by defunctionalization.

Like the aforementioned transformation, lambda-lifting, the possible elim-
ination goes two ways: On the one hand, one can eliminate higher order by
the introduction of suitable data structures for the representation of partial ap-
plications. On the other hand, one can replace all data structures by suitable

3See, however, [Pottier and Gauthier, 2004] for approaches to type the result of defunc-
tionalization.

14 CHAPTER 1. INTRODUCTION AND MOTIVATION

higher-order functions; a principle called the Church encoding of data [Baren-
dregt, 1984]. We will not discuss Church encoding in this work but the interested
reader is referred to a work of O. Danvy and L. Nielsen [Danvy and Nielsen,
2001] for some interesting insights into defunctionalization and its relation to
Church encoding.

1.1.1.3 Call by Value, Name and Need

Concerning the semantics of functional programming languages there is one
principle approach that distinguishes the languages LISP [McCarthy, 1978],
Scheme [Dybvig, 2002], Erlang [Armstrong et al., 1996], ML [Milner et al., 1990]
on the one hand and Clean [Koopman et al., 2001], Haskell [Peyton Jones, 2003]
on the other hand. It is the distinction between call-by-value and call-by-need
semantics, also called strict and lazy evaluation, respectively.

Example 1.1.9 (Evaluation Strategies) Consider the following program.

ones :: [Int]

ones = 1 : ones

head :: [a] → a

head (x:_) = x

tail :: [a] → [a]

tail (_:xs) = xs

There are different possibilities to evaluate the expression (head (ones 1)) in
the context of this program, e.g.:

head ones

head (1:ones)

1 head (1:1:ones)

head (1:1:1:ones)

. . .

For the expression (head (1:ones)) there is the choice of either applying the rule
for head or the rule defining ones. Note that the same choice was not yet given
for the expression (head ones) since it was not yet established that the rule for
head is applicable. (For all we know at that point ones could evaluate to [] and
then the rule for head would not have been applicable.)

As you can see by the example, different strategies for the evaluation of the
expressions are imaginable. The strategy known as call-by-value will always ap-
ply the rule of the innermost function symbol of an expression, whose arguments
are all values, i.e., an expression not containing function symbols. For exam-
ple, in the expression (head (1:ones)) ones is the innermost and is, therefore,
chosen for evaluation. The rightmost derivation in the picture is a call-by-value
derivation.

1.1. DECLARATIVE PROGRAMMING LANGUAGES 15

The call-by-name strategy, in contrast, applies the rules of outermost func-
tion symbols “as soon as possible”, i.e., whenever they are applicable. For
example, in the expression (head (1:ones)) head is further out than ones and
the rule for head is applicable. Hence, the leftmost derivation of the picture
illustrates call-by-name.

The example also illustrates that there are expressions for which call-by-
value might lead to an infinite derivation whereas call-by-name can find a value
in finitely many steps. It is well known that this is true in general, i.e., the
number of expressions for which call-by-name finds a value is a proper superset
of the expressions which can be evaluated by call-by-value [Barendregt, 1984].

The next example illustrates, however, that call-by-name might duplicate
work.

Example 1.1.10 (Call-By-Name and Call-By-Value) The following defi-
nition is a slight variant of a standard example for the comparison of call-by-
value and call-by-name.

double :: [a] → [a]

double x = app x x

The evaluation of the expression (double (tail [1])) can be depicted as follows,
where call-by-name is on the left and call-by-value on the right.

double (tail [1])

app (tail [1]) (tail [1])

app [] (tail [1])

tail [1]

[]

double []

app [] []

[]

Note that the call-by-name derivation is longer because the expression (tail [1])

is evaluated twice.

The duplication of work is the reason to consider a further strategy, which
is called “call-by-need” (or lazy in some contexts). The idea is to compute on
references to expressions rather than the expressions themselves. Then call-
by-need copies such references only but never complete expressions. For this
purpose the language of expressions has to be extended by the introduction of
such references.

Example 1.1.11 (Call-By-Need) In order to avoid copying the sub expres-
sion (tail [1]) during the evaluation of (double (tail [1])) (as developed in
Example 1.1.10 abvoce) the expression is reformulated like this, cf. the treatment
in [Maraist et al., 1998]:

let x=tail [1] in double x

The according call-by-need derivation could look like this:

16 CHAPTER 1. INTRODUCTION AND MOTIVATION

let x=tail [1] in double x = let x=tail [1] in app x x

= let x=[] in app x x

= let x=[] in x

Note that the derivation has not more steps than the call-by-value evaluation
from Example 1.1.10. Indeed, it is well known that call-by-need derivations need
less or equal many steps than call-by-value in general and that the set of values
computable by call-by-name and call-by-need are equal (for purely functional
programming languages).

When references are copied, as in the expression (let x=tail [1] in app x x)

from the above example, we say that the sub expression tail [1] is shared.
For functional programming languages the semantics of call-by-value and

call-by-name differ only with regard to (non-)terminating derivations. Further-
more, call-by-name and call-by-need differ with regard to efficiency, only. The
differences become more prominent, however, when functional languages are
extended by logic features.

1.1.2 Functional Logic Languages

In contrast to logic programming languages like Prolog, this work is concerned
with declarative programming languages which share all of the aforementioned
features of current functional programming languages. Especially, this includes
static typing, abstract data types, higher-order functions, and lazy evaluation as
discussed in Section 1.1.1. There are several approaches to extend logic program-
ming languages by special notational constructs for functions. The languages
Mercury [Somogyi and Henderson, 1996] and HAL [Garćıa de la Banda et al.,
2002], for instance, feature both a type system and notation for higher-order
functions. Also the Ciao dialect of Prolog has been extended by a functional no-
tation [Casas et al., 2006] and the language Oz [Smolka, 1995a] does also feature
special treatment for functions. All of the languages mentioned above, however,
feature call-by-value as the underlying semantics. The seamless integration of
lazy functional programming languages with logic features, however, seems to be
especially promising and is the leading principle of the languages Toy [López-
Fraguas and Sánchez-Hernández, 1999] and Curry [Hanus (ed)., 2006]. This
work is concerned with this latter branch of functional logic programming lan-
guages and our examples will be given in the syntax of Curry (which coincides
with the syntax of Haskell for functional programs). For the general topic of
the integration of functional and logic programming into a single paradigm the
interested reader is referred to a survey by Hanus [2007b].

Functional logic languages in the sense described above extend functional
programming languages by the possibility to define non-deterministic operations
and to compute with partial information by employing free variables. Each of
these topics will be introduced in a separate section below. With regards to
semantics, we will discuss the notions of run-time choice vs. call-time choice
in Section 1.1.2.3 which parallels the distinction between call-by-value, call-by-
name and call-by-need in functional languages.

1.1. DECLARATIVE PROGRAMMING LANGUAGES 17

1.1.2.1 Non-Deterministic Operations

When, for a given expression, pattern matching (see Section 1.1.1.1) does iden-
tify more than one rule to be applicable, functional languages like Haskell choose
the first rule appearing in the program. In functional logic programs, however,
this situation induces a non-deterministic choice among all applicable rules.

Example 1.1.12 (Non-Determinism)

insert :: a → [a] → [a]

insert x xs = x : xs

insert x (y:ys) = y : insert x ys

In Haskell the expression (insert 1 [2,3]) evaluates to [1,2,3] as the second
rule would be effectively ignored. Changing the order of the rules in the program,
(insert 1 [2,3]) would evaluate to [2,3,1]. If the program is interpreted as a
Curry program, however, the definition of insert implies that x is inserted as
new head or somewhere in the tail of a non-empty list. Therefore, the expres-
sion (insert 1 [2,3]) non-deterministically evaluates to [1,2,3], [2,1,3] or
[2,3,1].

When non-determinism is involved, we will usually use the term operation
rather than function. Whenever there are multiple matching rules we say that
these rules overlap.

For future reference we note that the following operation is a kind of archetype
of non-deterministic operations.

(?) :: a → a → a

x ? _ = x

_ ? y = y

The operator (?) induces a non-deterministic choice between its two ar-
guments. Using the operation (?), often referred to as choice, we can easily
formulate the simplest non-deterministic operation coin.

Example 1.1.13 (Operation coin)

coin :: Bool

coin = True ? False

For a call to coin there are two derivations to True and to False.

1.1.2.2 Free Variables and Narrowing

In addition to non-deterministic choice, functional logic languages also allow
computation with partial information. Functions and operations can be called
with unknown arguments that are instantiated in order to apply a rule. When-
ever there is more than one applicable rule, an instantiation will be chosen
non-deterministically. This mechanism is called narrowing [Slagle, 1974]. In
Curry unknown arguments are introduced as (let x free in e) for some ex-
pression e. (Note that this notation is similar and related to the one discussed
in the context of call-by-need in Section 1.1.10.)

Example 1.1.14 (Narrowing) Most standard examples for the expressive power
of narrowing are defined for Peano numbers:

18 CHAPTER 1. INTRODUCTION AND MOTIVATION

data Peano = O | S Peano

add :: Peano → Peano → Peano

add O m = m

add (S n) m = S (add n m)

A Peano number is either zero or the successor of another Peano number. The
number two, for example, is therefore represented by (S (S O)). Calling add

with a free variable as the second argument, e.g., (let x free in add (S O) x),
we get the derivation:4

let x free in add (S O) x = let x free in S (add O x)

= let x free in S x

This can be read as “adding 1 to anything yields the successor of anything.” If,
however, we call add with a free variable in the position of the first argument,
e.g., (let x free in add x (S O)), the following derivation is possible.

let x free in add x (S O) = let x=O in S O

Here, x has been instantiated to O. As noted above, the choice of rule is non-
deterministic and, therefore, we could also get the following derivation, among
many others.

let x free in add x (S O)

= let y free in let x=S y in S (add y (S O))

= let y=O in let x=S y in S (S O)

Note, however, that the instantiation of free variables is solely induced by the
program rules to be applied. Therefore, (let x free in S x) is the only value
that the expression (let x free in add (S O) x) can be derived to and it is not
possible that narrowing instantiates x in this situation.

The narrowing mechanism integrates the functional concept of reduction
with the non-deterministic search known from logic programming. Using nar-
rowing, we can also solve equations as the following example illustrates.

Example 1.1.15 Consider the following program.

equal :: Peano → Peano → Bool

equal O O = True

equal (S x) (S y) = equal x y

guard :: Bool → a → a

guard True x = x

In the context of this program together with the definitions of Example 1.1.14
above, the expression (let x free in guard (equal (add x x) (S (S O))) x) can
be used to find a solution for the equation x+ x = 2.

let x free in guard (equal (add x x) (S (S O))) x

= let y free in let x=S y in guard (equal (S (add y x)) (S (S O))) x

= let y free in let x=S y in guard (equal (add y x) (S O)) x

= let y=O in let x=S y in guard (equal x (S O)) x

4Note that the needed narrowing evaluation strategy [Antoy et al., 1994] is defined by
employing substitutions rather than let bindings. The representation used here is rather
informal and employed for introductory purposes only.

1.1. DECLARATIVE PROGRAMMING LANGUAGES 19

= let y=O in let x=S y in guard (equal y O) x

= let y=O in let x=S y in guard True x

= let y=O in let x=S y in x

As expected, the result is (S O) as x = 1 is a solution for the represented equa-
tion. Note that this is the only possible derivation of a value and that the needed
narrowing strategy [Antoy et al., 1994] tries only three additional possibilities,
namely x=O, x=S (S O) and x=S (S (S z)) for some free variable z, and that
this suffices to ensure that no further solutions exist.

1.1.2.3 Call-Time and Run-Time Choice

The interaction of laziness and logic programming features—especially non-
determinism—is not trivial both semantically, as well as operationally, i.e., from
the point of view of an implementation. Current lazy functional logic program-
ming languages have agreed on a model coined Call-Time Choice5 that supports
the intuition that variables are placeholders for values rather than possibly non-
deterministic computations. An important consequence of this computational
model is that a call-by-need computation has the same result as a call-by-value
computation in the context of the same program (if the latter computation
terminates).

The semantic consequences of call-time choice are usually illustrated with a
variation of the following tiny program:

Example 1.1.16 Consider the following program together with the definitions
for not and coin from Example 1.1.3 and 1.1.13.

selfEq :: Bool → Bool

selfEq b = iff b b

iff :: Bool → Bool → Bool

iff True b = b

iff False b = not b

The function selfEq checks whether its argument is equivalent to itself using
the Boolean equivalence test iff. There are two call-by-value derivations for the
goal (selfEq coin):

selfEq coin = selfEq True = iff True True = True

selfEq coin = selfEq False = iff False False = not False = True

If we evaluate the same goal with call-by-name, we get

selfEq coin = iff coin coin

and this copying of the expression coin yields four derivations where the addi-
tional two have a result that cannot be obtained with call-by-value.

iff coin coin = iff True coin = coin = True

iff coin coin = iff True coin = coin = False

iff coin coin = iff False coin = not coin = not True = False

iff coin coin = iff False coin = not coin = not False = True

5For a detailed discussion of the notions call-time and run-time choice the interested reader
is referred to [Hußmann, 1993].

20 CHAPTER 1. INTRODUCTION AND MOTIVATION

In a call-by-need derivation of the goal, i.e., in a lazy programming language,
we have

let x=coin in selfEq x = let x=coin in iff x x

and coin is evaluated only once. The result of (selfEq coin) is True:

let x=coin in iff x x

= let x=True in selfEq x x

= let x=True in x

let x=coin in iff x x

= let x=False in selfEq x x

= let x=False in not x

= let x=False in True

In general the essence of call-time choice can be coined as “shared non-
deterministic sub computations evaluate to the same value”.

Current lazy functional logic programming languages conform to call-time
choice semantics following the principle of least astonishment because — like in
the context of functional programming — it is very natural to think of variables
as place holders for values. Many people would intuitively say, for instance,
that a definition like the one for selfEq above could not sensibly ever yield
False. The point is further illustrated by the following example, in which a
function sort :: [Int] → [Int] should be tested with non-deterministic choices
for arguments.

Example 1.1.17 (Non-Deterministic Tests) Assume a function sort which
for a given list of, e.g, numbers computes a sorted version of that list. Then for
the following program

sortTests :: ([Int],[Int])

sortTests = (l, sort l) where l free

users will most likely expect the second component of the pair to be a sorted
reordering of the first. And they will still expect this behavior if they use a non-
deterministic generator for non-negative numbers instead of a free variable6:

sortTests :: ([Int],[Int])

sortTests = (l, sort l) where l = natList

natList :: [Int]

natList = []

natList = nat : natList

nat :: Int

nat = 1

nat = nat + 1

If run-time choice is assumed, however, the two appearances of the variable l in
(l, sort l) are completely independent such that (l, sort l) where l=natList

is equivalent to (natList, sort natalist). This implies that, for example, the
pair ([3,1],[4,5,6]) would be a possible value.

6We will show in Section 3.2 that logic variables can be simulated using such non-
deterministic generators and this result relies on call-time choice semantics, cf. [Antoy and
Hanus, 2006].

1.1. DECLARATIVE PROGRAMMING LANGUAGES 21

The sort function can be defined in a functional logic language using the test-
of-generate pattern [Hanus and Réty, 1998] where the definition of insert was
given in Example 1.1.12.

Example 1.1.18 (Permutation Sort)

sort :: [Int] → [Int]

sort l | sorted p = p where p = permute l

sorted :: [Int] → Bool

sorted [] = True

sorted [_] = True

sorted (m:n:ns) = m ≤ n && sorted (n:ns)

permute :: [a] → [a]

permute [] = []

permute (x:xs) = insert x (permute xs)

The definition of sort is only reasonable with call-time choice, i.e., if both oc-
currences of p (in the guard and in the right-hand side of sort) denote the same
value. Otherwise, an arbitrary permutation of the input would be returned if any
permutation is sorted. Thanks to lazy evaluation, permutations need to be com-
puted only as much as is necessary in order to decide whether they are sorted.
For example, if the first two elements of a permutation are already out-of-order,
then a presumably large number of possible completions can be discarded. Per-
mutations of a list are computed recursively by inserting the head of a list at an
arbitrary position in the permutation of the tail.

Permutation sort demonstrates nicely the semantic effect of call-time choice
and the operational effect of laziness which prunes away large parts of the search
space by not evaluating unsorted permutations completely. Thus, it is a charac-
teristic example for a search problem expressed in the more intuitive generate-
and-test style but solved in the more efficient test-of-generate style. This pattern
generalizes to other problems and is not restricted to sorting (which is, of course,
usually not expressed as a problem employing non-deterministic search).

1.1.2.4 Controlling Search

One last topic concerning the seamless integration of functional and logic pro-
gramming languages into a single paradigm is the control of logic search. Classic
logic programming languages like Prolog have a fixed strategy when searching
for solutions, i.e., depth-first search. Somewhat similar to the distinction be-
tween call-by-value and call-by-name/call-by-need, this search strategy can be
implemented efficiently but is not complete. This means that there are exam-
ples that have a solution for which depth-first search induces a non-terminating
evaluation.

Example 1.1.19 (Depth-First Search) Of course, a bit-wise representation
of numbers is more efficient than using the Peano definition of zero and suc-
cessor.7 Therefore, a more realistic representation of numbers as algebraic data
types is given by:

7See [Braßel et al., 2008] for an elaboration on the topic of bit-wise number representation
in functional logic languages.

22 CHAPTER 1. INTRODUCTION AND MOTIVATION

data Nat = IHi | O Nat | I Nat

Natural numbers are represented in binary notation with the least significant bit
first. The most significant bit is always one and, therefore, denoted IHi. The
values of type Nat can be related to natural numbers as follows, where nat(n)
denotes the representation of the number n as value of type Nat:

IHi =̂ 1
O (nat(n)) =̂ 2n
I (nat(n)) =̂ 2n+ 1

A non-deterministic choice between all possible numbers could be defined as fol-
lows. (Compare this with the definition for nat given in Example 1.1.17.)

nat = IHi

nat = O nat

nat = I nat

The problem when employing depth-first search is now that it will always be
biased towards one of the rules nat=O nat or nat=I nat. This means that, e.g.,
one of the simple equations like 2 ∗ x = 4 + x or 3 ∗ x = 3 + x cannot be solved
by the system. Breadth-first search, in contrast, will find a solution for both
equations as all rules are tried in turn.

An important idea for advanced programming of logic search is that the
programmer should be able to influence the search strategy from within his
program, leads to the concept of encapsulated search. Encapsulated search
is employed whenever different values of one expression have to be related in
some way, e.g., to compute a list of all values or to find the minimal value and
also to formulate a search strategy. A first approach to encapsulated search in
functional logic programming was given in [Hanus and Steiner, 1998] where a
primitive operator try was proposed. This operator allows to easily program
different search strategies. The first mature implementation of try for the func-
tional logic language Curry was presented by Lux [1999] for the “Münster Curry
Compiler” (MCC), while a different approach to encapsulated search was taken
in the PAKCS compilation system [Hanus et al., 2010]. With both approaches
however, the discussion of how to approach encapsulated search could not be
considered as solved. Braßel et al. [2004b] show in many examples and con-
siderations that the interactions between encapsulation, laziness and sharing is
complicated and prone to problems. Braßel et al. [2004b] also present a wish-
list for future implementations of encapsulation. The approach to encapsulated
search presented in Section 6.6 fulfills all the points of that list. The problems
when connecting encapsulated search with laziness is illustrated by the following
example.

Example 1.1.20 (Encapsulated Search)
Reconsider the representation of numbers as algebraic data types introduced in
Example 1.1.19. Next we define a test whether a given number is a prime
number. As you know, a prime number is any number different from 1 which
can be divided without rest only by 1 and itself. Assume a suitable definition
of the rest of division mod, which computes the remainder for a division as an

1.1. DECLARATIVE PROGRAMMING LANGUAGES 23

optional value of type Maybe.8 With this operation we can define this test quite
concisely as follows.

divisorOf :: Nat → Nat → Nat

divisorOf n m | mod n m =:= Nothing = m

prime :: Nat → Success

prime n = (n == 1) =:= False

& length (allValues (divisorOf n nat)) =:= 2

Here, the operation allValues performs encapsulated search to yield a list con-
taining all pairwise different values of its argument. To express the conditions,
we use the strict equality operator (=:=)) which implements unification. The
two conditions are expressed as two constraints connected by the operator (&).
(&) is called “concurrent conjunction” and is a primitive, i.e., an externally
defined operator in Curry. The adjective “concurrent” suggests that the result
should not depend on the order in which the constraints are evaluated. But if
allValues is based on encapsulated search as available in PAKCS, the result of,
e.g., prime (3?4) does indeed depend on the order of evaluation. If the constraint
(n==1) =:=False is solved first then the computation in PAKCS is successful
and if the second constraint is preferred, the computation yields no solution.
We will not explain how this behavior comes to pass and refer to the work of
Braßel et al. [2004b] for a detailed discussion. Here, it is only important that
this problem also stems from the connection of laziness with logic search and is
caused by the sharing of n in both constraints.

In an alternative approach by Lux [1999] the result does not depend on the or-
der in which the two constraints are evaluated. The computation of (prime (3?4))

fails for any order of evaluation, cf. the work by Braßel et al. [2004b] for
details. Although the approach by Lux [1999] does not require any knowledge
about the order of evaluation, detailed knowledge about the compiler and the
executed optimizations are needed to successfully employ encapsulated search in
this manner. For instance, a program can yield different values if one writes
(λ x → x=:=(0 ? 1)) instead of (=:=(0 ? 1)) although by the very definition
of the language Curry [Hanus (ed)., 2006] the latter expression is just an abbre-
viation of the former.

In [Antoy and Braßel, 2007] the source of the above problems has been ex-
amined in a framework of graph rewriting. The aim of [Antoy and Braßel, 2007]
was to elaborate sufficient conditions to prohibit the problematic situations de-
scribed in [Braßel et al., 2004b]. At the same time, however, [Antoy and Braßel,
2007] give also examples that allowing the problematic situations might lead to
interesting programs.

In [Braßel and Huch, 2007a] the first approach to fulfill the wishlist of [Braßel
et al., 2004b] is presented. With regard to the examples presented in [Antoy
and Braßel, 2007], however, the approach of [Braßel and Huch, 2007a] was still
not the end of development.

Recently, in [Antoy and Hanus, 2009] a theoretic approach to compute with
set functions was presented. The idea is to keep a representation of the whole
computation space and to traverse this representation upon total completion of

8The type Maybe is defined by “data Maybe a = Just a | Nothing. See [Braßel et al.,
2008] for a definition for mod on the presented data type.

24 CHAPTER 1. INTRODUCTION AND MOTIVATION

evaluation to collect the values, [Antoy and Hanus, 2009, Definition 5]. We will
present an implementation of this idea in Section 6.6.2.

The approach presented in this work extends the approach of Braßel and
Huch [2007a]. We will examine the contribution to encapsulated search in Sec-
tion 6.6.

1.2 Implementing Functional Logic Languages

Corresponding to the nature of functional logic languages, there are three basic
ways to obtain an implementation:

• implement an abstract machine in a suitable base language like C or Java

• transform Curry programs into logic programs

• transform Curry programs into (lazy) functional programs

Each way has some advantages and disadvantages: Designing an abstract ma-
chine has the advantage of giving the developer full access to all features, allow-
ing him to gather information about sharing, or control the search mechanisms
in order to implement, for instance, encapsulated search. However, both func-
tional and logic programming come with a long history of optimization tech-
niques, knowledge of how to avoid space leaks, how to design garbage collection
and so on. When implementing a new machine from scratch, all of this work
has to be reimplemented and chances are high that the machine will be behind
state-of-the-art forever. In addition, libraries of the base language are compar-
atively hard to include in the implemented language. From the point of view of
the abstract machine, these libraries are strictly external.

This is what makes approaches to transformation into related languages
promising. All of the optimization techniques for the base language will be
the more effective the lesser the level of interpretation is. There is no need to
reimplement garbage collection or reconsider discussions about space leaks. The
greater the similarities between base and implemented language, the easier is
the integration of the base language’s libraries. Furthermore, transformation
to an existing language can involve less work than implementing an abstract
machine from scratch. This is because many of the base language’s features can
be used without reconsidering implementation details of these features.

On the other hand, the developer of a transformation to a declarative host
language has less control on program execution. When transforming to a logic
language, for instance, the developer has to rely on the base language features
to control logic search. Implementing an own approach to encapsulated search,
like the one proposed for Curry in [Braßel et al., 2004b], are hard or even
impossible to realize. When transforming to a functional language, features like
sharing are beyond access or have to be reimplemented at high costs.9 This
makes implementing Curry’s features like call-time choice tricky to transform.
Moreover, the developer has to comply with standards of the target language.
For instance, in transforming to Prolog he has to consider implementing lazy

9An example of a technique to transform functional logic to functional programs together
with a reimplementation of sharing is given in [Fischer et al., 2009]. The benchmarks pre-
sented in Chapter 6 demonstrate that the cost of explicit sharing is indeed so high that the
proposed translation technique results in programs which are usually much slower than current
systems [Braßel et al., 2010].

1.2. IMPLEMENTING FUNCTIONAL LOGIC LANGUAGES 25

evaluation in a strict language. When transforming to Haskell he has to obey
the type system, if he wants to take advantage of all of Haskell’s optimizations.

There have been several implementations of abstract machines for Curry in
imperative languages. An early Java implementation [Hanus and Sadre, 1997]
has by now been set aside, an implementation in C [Lux and Kuchen, 1999] has
reached the state of usability. A second attempt to implement Curry in Java
with new concepts is still under development [Antoy et al., 2005] and continu-
ously extended by new ideas [Antoy et al., 2006b]. All of these implementations
more or less follow the idea of compiling into code for an abstract machine or
implement a graph rewriting strategy, respectively.

Also transformations of Curry into a logic programming language have been
devised: The most mature system PAKCS [Hanus et al., 2010] transforms Curry
programs to SICStus Prolog10, thereby using Prolog’s features of constraint
solving, free variables and logic search.

In this work, however, we will discuss how to transform functional logic pro-
grams to purely functional programs, reusing the sharing of the host language.

1.2.1 Transformation to Functional Languages

Conceptually, the simplest way to provide logic features in functional languages
is to express non-determinism using lists [Wadler, 1985] but in principal any
instance of the class MonadPlus can be used for this purpose, for examples see
[Hinze, 2000, Kiselyov, 2005, Naylor et al., 2007]. All these approaches model
non-deterministic computations like in Prolog in the sense that all computa-
tions involving non-deterministic choices are strict. However, the functional logic
paradigm is mainly motivated by the insight that laziness and non-deterministic
search can be combined profitably, cf. Section 1.1.2.3. Especially, this combi-
nation allows to program in the expressive and intuitive test-of-generate style
while effectively computing in the more efficient style of test-of-generate [Hanus
and Réty, 1998], cf. Example 1.1.18. Recent applications of this technique show
that it is well suited for the demand-driven generation of test data [Runciman
et al., 2008, Fischer and Kuchen, 2008]. Functional logic design patterns [Antoy
and Hanus, 2002] illustrate further benefits of combining lazy functional and
logic programming.

By defining a suitable class of monads, it has recently been shown that
functional logic programs can be translated to pure functional programs [Fischer
et al., 2009, Braßel et al., 2010]. The monadic approach does, however, introduce
a considerable overhead by the necessity to reimplement sharing, as will be
examined in detail in Chapter 6.

In principle, choosing a lazy functional target language has several advan-
tages [Braßel and Huch, 2009, 2007b]. It is possible to translate determinis-
tic functions without imposing much overhead. Additionally, Haskell allows to
implement sharing of computed values even across non-deterministic branches
where other implementations, including [Fischer et al., 2009], need to reevaluate
shared expressions. Finally, in contrast to a logic target language, the explicit
encoding of non-determinism allows more fine grained control of logic search,
cf. Section 1.1.2.4.

Although Prolog is also a declarative language, there are many differences

10www.sics.se/isl/sicstuswww/site/index.html

26 CHAPTER 1. INTRODUCTION AND MOTIVATION

between Prolog and Curry, more than there are between Curry and Haskell.
Curry is not only syntactically very close to Haskell, many Curry modules in
fact are Haskell programs. A great part of every-day Curry programming is
functional programming, and what makes the basic concepts of Curry powerful
is that each function can be used to perform logic search without changing its
definition. Whether a deterministic function is used logically or functionally only
depends on the way it is called: Calling a given function with free variables as
arguments automatically induces a search if these variables are needed, whereas
a call without free variables implies a deterministic evaluation like in Haskell,
cf. Section 1.1.14. This fact implies a great deal of potential optimization
when translating Curry to Haskell: whenever we can make sure by analyzing
the source program that a given expression does not induce non-determinism or
binding of free variables, we can simply use the original Curry code without any
transformation at all.11 Clearly, this way and because the translated programs
do not feature side effects we will automatically profit from all of Haskell’s
optimization techniques. Accordingly, the amount of interpretation is, even in
case of potentially non-deterministic programs, much lesser than in Prolog. This
leads to other advantages like easy integration of Haskell-libraries, at least for
deterministic parts of Curry programs.

One last point in favor of a Haskell transformation stems from different
approaches to encapsulated search, as discussed in Section 1.1.2.4. In [Braßel
et al., 2004b] it was shown that new basic concepts are needed to provide a
declarative access to search operators. Unfortunately, these concepts are not
realizable if the features normally provided by Prolog are used. As logic search
has to be added to the Haskell transformation, the developer has full control on
this part of the implementation. Thus, a transformation to Haskell can provide
a better, i.e. more declarative, way of implementing encapsulated logic search.

The challenge of targeting Haskell, however, is to preserve the laziness and
sharing of the source language which allows the efficient execution of programs
written in the generate-and-test style. Therefore, previous approaches to non-
determinism in Haskell [Wadler, 1985, Hinze, 2000, Kiselyov, 2005, Naylor et al.,
2007] do not preserve laziness while other approaches [Fischer et al., 2009] need
to reimplement sharing, which results in a considerable overhead also for deter-
ministic programs.

All in all the translation scheme developed in this work comprises the fol-
lowing advantages:

• It is the first scheme translating lazy functional logic programs to purely
functional programs. Consequently, the resulting code can be fully opti-
mized, in contrast to our previous approach [Braßel and Huch, 2009] which
relied on unsafe side effects for generating labels.

• The transformation is simple — one could even say “off-the-shelf” as the
only prerequisite is the generation of unique identifiers. Introducing such
identifiers to a given program is a well known technique and there exist
good implementations for current compiling systems [Augustsson et al.,
1994].

11Note, however, that we use the code of the intermediate language flat Curry rather than
the original program.

1.3. DEBUGGING FUNCTIONAL LOGIC PROGRAMS 27

• The results for translating functional Curry programs closely correspond
to programs originally written in Haskell. This ensures, in contrast to [Fis-
cher et al., 2009, Braßel et al., 2010] that these programs can be optimized
as well as programs originally written in Haskell.

• The sharing of the host language is reused, resulting in less overhead
especially for deterministic programs, again in contrast to [Fischer et al.,
2009, Braßel et al., 2010].

1.3 Debugging Functional Logic Programs

It is the basic credo of declarative programming that abstracting from certain
aspects of program execution greatly improves the quality of the written code:
Typical sources of errors are principally omitted, like issues of memory manage-
ment, type errors and multiple allocation of variables. A declarative program
is much nearer to the logic of the implemented algorithm than to its execution.
This makes code much more readable, comprehensive and maintainable.

There seems to be at first glance, however, a great drawback to these tech-
niques: As there is such a far abstraction from the actual program execution,
the executed program becomes a black box. Where an imperative program-
mer is able to step through his program’s execution and recognize parts of his
programs, the declarative programmer is usually not able to draw any such
connections. This is of course an especially severe problem for debugging.

1.3.1 Related Work

There are many approaches in the literature to close this gap between the source
code and its execution. Among the many techniques proposed so far we can only
name a few and give a broad categorization:

Visualization of Computation A straightforward approach to search bugs
is to represent the actual program execution in a human readable form
and to provide tools to comfortably browse this representation. Such tools,
beginning with step-by-step debuggers, have been developed for many lan-
guages, imperative and declarative alike. These tools normally depend on
a specific backend of the supported language and seldom aim at porta-
bility. Some very elaborated examples for declarative languages include
ViMer [Cameron et al., 2003] for the logic language Mercury [Somogyi and
Henderson, 1996], Ozcar [Lorenz, 1999] for the Mozart system12, a back-
end for the language Oz [Smolka, 1995a] and TeaBag [Antoy and Johnson,
2004] for the FLVM implementation [Antoy et al., 2005] of the functional
logic language Curry [Hanus (ed)., 2006].

Value Oriented Debugging approaches based on analyzing what values have
been computed by evaluating a given expression within the program are,
for instance, declarative debugging, cf. the book by Shapiro [1983] for
logic, the work by Nilsson and Fritzson [1994], Nilsson and Sparud [1997b]
for functional, the one by Caballero and Rodŕıguez-Artalejo [2004] for

12http://www.mozart-oz.org

28 CHAPTER 1. INTRODUCTION AND MOTIVATION

functional logic programming; Silva [2006] gives a general survey of declar-
ative debugging for functional logic languages. Additional value oriented
approaches are, e.g., observations for lazy languages (cf. the work by Gill
[2001] for functional, the ones by Braßel et al. [2004a], Huch and Sadeghi
[2006] for functional logic languages), backward stepping and redex trail-
ing (for functional languages only [Booth and Jones, 1997, Sparud and
Runciman, 1997c]).

Performance Oriented Sometimes the bug is not in the computed values but
in its failing efficiency. The general approach to analyze the frequency and
duration of function calls is mostly known as “profiling”. Profilers mea-
suring actual run times are naturally dependent on a specific backend.
Traditional profiling methods do not readily translate to lazy languages.
A solution to this problem – attributing execution costs to user defined cost
centers – was proposed in [Sansom and Peyton Jones, 1997] for the GHC13

for the functional language Haskell [Peyton Jones, 2003] and ported for
PAKCS [Hanus et al., 2010], an implementation of the functional logic
language Curry, in [Braßel et al., 2005]. In adition to run-time profil-
ing, both approaches feature a more abstract and, therefore, much more
portable approach to profiling which is called “symbolic profiling”. Such
abstract measurements are not only more portable but also accessible to
verification.

Special Purpose Tools Under this catch-all category we would like to men-
tion some approaches which give backend depending information about
special features of the program execution. Among many existing sys-
tems are stack inspection for the GHC [Ennals and Peyton Jones, 2003], a
statistic overview of the search space available in the Oz debugger [Lorenz,
1999], the graphical representation of profiling data for the GHC [Pey-
ton Jones, 2003] and GHood, an animated graphical viewer of observa-
tions [Gill, 2001].

The tools and categories above can only give a remote hint to the magnitude
of tools giving information about the execution of declarative programs. As is
often the case with such a multi-faceted research field: the same problems are
solved many times and many basic approaches have to be reinvented time and
again. How to cope with large applications? How to obtain information if no
direct access to the back end is given? Is the represented data correct and is it
complete or do we miss something? Wouldn’t it be nice to have the same tool
they got for that other backend for our language? The first approach that gave
the basic idea that these problems might be solvable after all was the further
development of redex trailing as proposed in [Chitil et al., 2001]. There the
authors observed that the data collected for redex trailing was also sufficient
to provide declarative debugging as in the systems Freja [Nilsson and Sparud,
1997b] and observations like in Hood [Gill, 2001]. The approach of [Chitil et al.,
2001] is also more portable than Freja and a more powerful implementation of
Hood. Freja was implemented as a special Haskell compiler available only for
the Solaris operation system, and the more powerful version of Hood had to be
integrated in the Haskell interpreter Hugs14 in order to achieve some additional

13http://www.haskell.org/ghc/
14http://www.haskell.org/hugs/

1.3. DEBUGGING FUNCTIONAL LOGIC PROGRAMS 29

features. The key idea to obtain this portability was to transform the given
program and collect the information by side effects rather than relying on a
specific backend.

1.3.2 The Approach Presented in this Work

In [Braßel et al., 2006, 2004c], we have extended the basic ideas of [Chitil et al.,
2001] in several ways. First, our approach supports the additional features
available in functional logic languages, i.e., free variables and non-deterministic
functions. In addition, we have based our approach on a core language which
features the main concepts of functional logic languages. This language, called
“Flat Curry”, was introduced in [Albert et al., 2005] and is described in detail
in the next chapter.

Functional logic languages like Toy [López-Fraguas and Sánchez-Hernández,
1999] or Curry can be translated to this core language (and actually are in
some implementations of Curry). On one hand this is one step away from the
original source program but on the other hand this approach has some important
advantages:

Portability At least conceptually, our approach is open to be ported to all
declarative languages which can be translated to Flat Curry, including
lazy functional languages. The program transformation, cf. [Braßel et al.,
2006], maps a valid Flat Curry program to another valid Flat Curry pro-
gram. The only features the backend has to support in order to execute
the transformed program are some basic functionality to create side effects
like unsafePerformIO.

Verifiability A considerable part of the formal foundation of functional logic
languages has been developed with respect to Flat Curry, cf. [Albert
et al., 2005]. Therefore, we were able to give proofs about correctness and
completeness of the collected data in [Braßel et al., 2004c] which was not
yet possible for the approach of [Chitil et al., 2001]15

Unfortunately, debugging tools based on our former approach [Braßel et al.,
2006] share a basic problem with the construction of redex trails [Chitil et al.,
2001]: the debugging tools based on both approaches do not scale up well to
large programs because of the size of the recorded data, which makes these
approaches not feasible for realistic applications involving computations of more
than a few thousands of reductions.

In Section 6.10 of this work, we introduce an alternative approach to debug-
ging lazy functional programs which was originally published as [Braßel et al.,
2007]. Instead of storing a complete redex trail, we memorize only the informa-
tion necessary to guide a call-by-value interpreter to produce the same results.
To avoid unnecessary reductions, similarly to the lazy semantics, the call-by-
value interpreter is controlled by a list of step numbers which allows us to know
which redexes should not be evaluated. In the extreme case where every re-
dex is evaluated even by a lazy strategy, the list of step numbers reduces to a
single number—the total number of reduction steps in the complete computa-
tion—which demonstrates the compactness of our representation. In addition

15According to personal communication with O. Chitil, formal reasoning for the approach
of [Chitil et al., 2001] is forthcoming.

30 CHAPTER 1. INTRODUCTION AND MOTIVATION

to the basic idea we will present a debugging tool based on that approach and
discuss that the translation scheme developed in this works makes it possible to
transfer the technique to also cover debugging of functional logic programs.

1.4 Content of this Work

In Chapter 2 we will present the formal framework for the representation of
functional logic programs and their semantics. In Chapter 3 we will transfer
a result about the relation between free variables and generator functions to
this framework. Chapter 4 presents a simplification of how functional logic
programs can be represented in the framework of natural semantics and discusses
the connection to term graph rewriting. All of this work aims at connecting
the contents of Chapter 5 to the previous work in the field of functional logic
programming. In that chapter we are concerned with a detailed examination
of a technique to transform lazy functional logic programs to purely functional
programs. The purpose of the subsequent Chapter 6 is to demonstrate that the
developed translation scheme is indeed relevant for practice. In that chapter
we present benchmarks for programs translated by our scheme which show that
it is a serious alternative for existing compilation systems. Additionally, we
present the implementation of various features to extend our approach. Some
of these features can be found in existing compilation systems for functional
logic programs, some are unique to our approach.

The basic idea of the transformation studied in Chapter 3 has been published
in [Braßel and Huch, 2007a]. The proofs of formal correctness, however, are new
and much more elaborated than the ones presented in [Braßel and Huch, 2007a].
The transformation scheme examined in Chapter 5 has been published as [Braßel
and Fischer, 2008], although no proof of soundness was given there. A former
version of the approach employing side effects was formally treated in [Braßel
and Huch, 2007a]. All proofs have been substantially revised and extended for
this work. The contents of Section 6.10 were published as [Braßel et al., 2007,
Braßel and Siegel, 2008, Braßel, 2008].

Although there might be few if any direct correspondence between this text
and those published, many of our previous approaches have contributed to the
material in the presented level of maturity, including:

• [Braßel and Christiansen, 2008, Braßel and Christiansen, 2008] to the con-
tents of Chapter 3 and 4

• [Braßel and Hanus, 2005, Braßel and Huch, 2009, Braßel et al., 2010] to
the contents of Chapter 5, and especially

– [Braßel et al., 2004b, Antoy and Braßel, 2007] to the contents of
Section 6.6

– [Braßel et al., 2008] to the contents of Section 6.8

• [Braßel et al., 2004a,c, 2005, 2006, Braßel, 2007] to Section 6.10

Chapter 2

Functional Logic Programs

This chapter contains basic definitions to formalize our notion of functional logic
programs and their semantics. We will first define the syntax of expressions and
programs (Section 2.1). After that we introduce a natural semantics [Albert
et al., 2005] which has become the base of many publications (Section 2.2).
We will then introduce some additional steps to simplify this formalism (Sec-
tion 2.3). Parts of this chapter have been published as [Braßel and Huch, 2007a].

2.1 Signatures, Expressions and Programs

A constructor-based signature Σ is a disjoint union of two sets of symbols
CΣ∪FΣ along with a mapping from each symbol to a natural number, called the
symbol’s arity. We will write s ∈ Σ(n) to denote that Σ contains the symbol
s and that the arity of s is n. Elements of the sets CΣ and FΣ are called
constructor and function symbols, respectively.1 We will use the symbols
c, c1, . . . , cn for constructor symbols, f, g, h, f1, . . . , fn for function symbols and
s, s1, . . . , sn for arbitrary symbols in CΣ ∪ FΣ .

Example 2.1.1 (Signature) The signature Σ for the collected programs of
Examples 1.1.1-1.1.4 is:

Σ(0) = {Success, True, False, Nil}
∪ Σ(1) = {Finite, Infinite, not, head, tail}
∪ Σ(2) = {Cons, iff, xor, app}
∪ Σ(3) = {Date}

This signature is partitioned into the two sets:

CΣ = {Success, True, False, Nil, Finite, Infinite, Cons, Date}
FΣ = {not, head, iff, xor, app}

As mentioned in Section 1.1.1.1, further type information apart from a symbol’s
arity will be ignored in this work.

In general we use the notation on to denote a sequence of objects o1, . . . , on.
If the exact length and elements of the sequence are arbitrary we may write o.

1As discussed in Section 1.1.1.2 we will consider our programs to be first order.

31

32 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

In the following, we consider a fixed set of variables Var. Variables are
denoted by x, y, z, x1, . . . , xn. For a given signature Σ the set of values VΣ is
the set of terms constructed from CΣ and Var, only, i.e., VΣ 3 v ::= x | c(vn)
where x ∈ Var and c ∈ CΣ

(n). The set of expressions EΣ is defined by e ∈ EΣ

iff e is inductively constructed from the following rules. Expressions are denoted
by e, e1, . . . , en.

e ::= x (variable x ∈ Var)
| c(en) (constructor call c ∈ CΣ ∩ Σ(n))
| f(en) (function call f ∈ FΣ ∩ Σ(n))
| case e of {pn → en} (case expression, n > 0)
| e1 ? e2 (disjunction)
| let {xn = en} in e (let binding xn ∈ Var, n > 0)

p ::= c(x) (pattern , x must be pairwise different)

Accordingly, we have VΣ ⊆ EΣ. For constants, i.e., symbols with arity 0,
we will often omit the argument brackets and write, e.g., Nil instead of Nil().
Note that in contrast to the work of Albert et al. [2005], we do not distinguish
between flexible and rigid case expressions.

In Chapter 1.1 we have seen many examples of expressions including let-
expressions in Sections 1.1.10 and 1.1.2.3 and expressions of the form (e1 ? e2)
in Example 1.1.13. Note that the symbol “?” was treated as a defined operation
in Example 1.1.13 but is considered a primitive to introduce a non-deterministic
disjunction from now on. To keep expressions containing multiple disjunctions
more readable, we omit brackets for ? expressions and assume that ? binds left
associatively. Expressions of the form case e of {pk → ek} are used to represent
pattern matching, cf. Section 1.1.1.1.

Example 2.1.2 (Pattern Matching using Case) The pattern matching for
not (Example 1.1.3) is defined using case-expressions like this:

not(x) = case x of { True → False, False → True }

As case-expressions are defined to match a shallow pattern, only, i.e., one con-
structor at a time, the function equal from Example 1.1.15 needs a nested case
expression.

equal(a,b) = case a of { O → case b of O → True,

S(x) → case b of S(y) → equal(x,y) }

For overlapping rules, pattern matching may have to make use of ? in addition
to case-expressions. The operation insert (Example 1.1.12) is represented as
follows.

insert(x,xs) = Cons(x,xs)

? (case xs of Cons(y,ys) → Cons(y,insert(x,ys)))

The general transformation of pattern matching to disjunctions and case-ex-
pressions can be studied in [Hanus and Prehofer, 1999]. As we think that case-
expressions are much less readable than the programs introduced in Chapter 1,
one of our aims in this chapter will be to regain some of the readability of the
original programs in Section 4.

We say that a binding x = e in a let-expression and a branch x → e in a
case-expression introduces the variable x. We say that an expression e has

2.1. SIGNATURES, EXPRESSIONS AND PROGRAMS 33

unique variables iff every variable is introduced at most once in e. The astute
reader may have noticed that we have not given a special syntax to introduce
free variables like in Example 1.1.14. The convention is that free variables are
introduced as circular let bindings of the form (let {x = x} in e).

A special class of terms with unique variables is called linear. In a linear
term every variable occurs at most once. We will often need to give inductive
definitions over the structure of expressions. One such definition is the set of
variables occurring in an expression e, denoted by vars(e), defined by:

vars(x) = {x}
vars(s(en)) =

⋃
1≤i≤n vars(ei)

vars(case e of {pk → ek}) = vars(e) ∪
⋃

1≤i≤k vars(ei)
vars(e1 ? e2) = vars(e1) ∪ vars(e2)

vars(let {xk = ek} in e) = vars(e) ∪
⋃

1≤i≤k vars(ei)

A substitution σ : Var → EΣ is a mapping from variables to expressions
such that only for a finite subset of Var we have σ(x) 6= x. We denote this finite
subset of Var, the domain of σ, by dom(σ) and, accordingly, by rng(σ), the
range of σ, the set {σ(x) | σ(x) 6= x}. A concrete substitution will be given by
explicating the behavior on the domain, e.g., we will write {x 7→ not True, y 7→
False} to denote the substitution that maps the variable x to the expression
not True and the variable y to False. For a set of variables v ⊆ Var, we denote
by σ \V the substitution that behaves like σ on Var\V and like the identity on
V . The homomorphic extension of a substitution σ, denoted by σ, is inductively
defined as follows.

σ(x) = σ(x)
σ(s(en)) = s(σ(en))

σ(case e of {pk → ek}) = case σ(e) of {pk → σ \ vars(pk)(ek)}
σ(e1 ? e2) = σ(e1) ? σ(e2)

σ(let {xk = ek} in e) = let {xk = σ \ {xk}(ek)} in σ \ {xk}(e)

In most cases we will call the extension of σ also a substitution for simplicity
and we will reuse the symbol σ (instead of σ). A substitution σ whose range
is a subset of Var is called a variable renaming.2 The sub terms of a given
expression e, defined in the usual inductive way, will be denoted by sub(e).

A bit prematurely, Example 2.1.2 already introduced how our formalization
of programs looks like. Accordingly, a program over signature Σ consists of a
sequence of function definitions (D) where each definition introduces a different
function symbol (f ∈ FΣ) and consists of a pair of a left-hand side of the form
f(x) and an expression (e ∈ EΣ) on the right-hand side.

P ::= D (program) each D defines different symbol f
D ::= f(x) = e (declaration) f(x) linear, e has unique variables,

for all x ∈ vars(e) we have that x is
either introduced in e or is an ele-
ment of {xn} but not both.

2Often in the literature one finds the additional requirement that a variable renaming must
be injective. In this work, we will explicitly say “injective variable renaming”, whenever this
additional property is needed.

34 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

Programs were already given in Example 2.1.2.
Somewhat informal, we call a variable fresh if it does not appear anywhere

in the context it depends on, but in Section 2.2.3 we will give a more concrete
notion of freshness.

When we refer to a rule within a program, we want to be independent of
the names of variables occurring in that rule. Especially, as program rules are
always identified by their left-hand side, we want the variables introduced in
the right-hand side to be fresh. Therefore, when we write l = r ∈ P for a
program P we mean that l = r is a variant of a program rule, i.e., there
is an injective variable renaming σ and a rule l′ = r′ in the program P such
that σ(l) = l′, σ(r) = r′ such that vars(r) \ vars(l) are fresh and r has unique
variables.

2.2 Natural Semantics of Case-Based Programs

By now there are many different approaches to capture the semantics of func-
tional logic programs. Many approaches are based on a rewriting logic [González-
Moreno et al., 1999a] or one of the various extension thereof. Another main
stream in the study of functional logic programming are based on term graph
rewriting [Antoy, 2005]. The semantics employed in this work [Albert et al.,
2005] is an operational semantics for functional logic programs in a style which
is often referred to as “natural”. But there are many more approaches with
less impact on the literature. The situation with this multitude of approaches
is not fortunate. We hope that one of the contributions of this work will help
the situation at least a little by bringing closer the approaches of [Antoy, 2005]
and [Albert et al., 2005] with the results of chapter 4.

The natural semantics [Albert et al., 2005] is based on a special subset of
expressions, called flat expressions (Section 2.2.1) and a central notion of this
semantics is that of a heap and a configuration (Section 2.2.2). The idea is that
a heap contains bindings for variables as is necessary to obtain call-by-need se-
mantics, see Section 1.1.10. A configuration additionally contains the expression
which is currently evaluated. The semantics itself is then defined as a set of rules
to relate configurations (Section 2.2.3). There will be some notable differences
in our definition from the original approach which are examined in Section 2.2.4.
Finally, section 2.2.5 will introduce an abstraction of the operational semantics
which will allow to express the results of this work more concisely.

2.2.1 Flat Expressions

An important subset of the expressions are the flat expressions. Flat ex-
pressions may only contain variables as arguments of constructor and function
applications. The left-hand sides and the patterns of the above definition are
examples of flat expressions. The presence of let bindings makes it possible to
transform arbitrary case-based expressions to a flat expression. One possible
transformation is the operation flat :

2.2. NATURAL SEMANTICS OF CASE-BASED PROGRAMS 35

flat(x) = x

flat(s(en)) = let {ym = flat(e′m)} in s(xn)

(ym, e′m, xn) = varArgs(en)

flat(case e of {pk → ek}) = case flat(e) of {pk → flat(ek)}
flat(e1 ? e2) = flat(e1) ? flat(e2)

flat(let {xk = ek} in e) = let {xk = flat(ek)} in flat(e)

varArgs(ε) = (ε, ε, ε)

varArgs(e · en) =
{

(y · ym, e · e′m, y · xn) , if e 6∈ Var
(ym, em, e · xn) , if e ∈ Var

where y fresh and (ym, e′m, xn) = varArgs(en)

In the above definition and in the following, we make the convention that,
for k = 0, the “expression” let {xk = ek} in e is just a complicated way to write
e. For example, we have flat(True) = True. The set of flat expressions for
signature Σ will be denoted by FEΣ in the following and, naturally, we have
FEΣ ⊆ EΣ.

Example 2.2.1 (Flattening) For the expression xor(True,False), cf. Exam-
ple 1.1.3, we have

flat(xor(True,False)) = let {x1 = True, x2 = False} in xor(x1, x2)

Flattening may produce nested let-bindings as for the following expression, cf.
Example 1.1.10.

flat(double(Cons(1,Nil)))
= let {x1 = let {x2 = 1, x3 = Nil} in Cons(x2, x3)} in double(x1)

Variable arguments are not touched by flattening, as illustrated by flattening (a
variant of) the right-hand side of the recursive rule defining app from Exam-
ple 1.1.4.

flat(Cons(x, app(y, z))) = let {x1 = app(y, z)} in Cons(x, x1)

The purpose of flattening is to obtain call-by-need and call-time choice, as dis-
cussed informally in Sections 1.1.10 and 1.1.2.3 and formalized in the following
section.

2.2.2 Heaps and Configurations

For the set of variables Var and the set of flat expressions FEΣ, as defined in
Section 2.2.1, a heap is a finite subset of Var × FEΣ such that each element
x ∈ Var appears at most once in a pair (x, e) within the set. In other words
a heap represents a partial function from Var to FEΣ. Heaps will be denoted
with upper case Greek letters (e.g. Γ,∆,Θ) and we adopt the usual notation
for functions to write Γ(x) = e for (x, e) ∈ Γ. A heap update Γ [x 7→ e] is

36 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

an abbreviation for (Γ \ {(x,Γ(x))}) ∪ {(x, e)}. In analogy to construction and
pattern matching of values in programs, we use the same notation to construct
and deconstruct heaps. More clearly, if we say that a heap Γ′ is equal to Γ [x 7→ e]
we not only imply that Γ′ is the result of an update of Γ by (x, e) but also that
Γ = (Γ′ \ {(x, e)}). For a concrete example of this notation consider the rule
(VarExp) in Figure 2.1 as discussed below. We will also make use of the usual
notations dom(Γ) and rng(Γ) to denote the domain and range of a heap,
respectively. Note that an updated heap is again a heap and that for all heaps
Γ the equation Γ [x 7→ e] [x 7→ e] = Γ [x 7→ e] holds.

A configuration Γ : e is a pair of a heap and a flat expression. A well-
formed configuration additionally satisfies the condition that no variable in
dom(Γ) is introduced in any of the expressions in E := {e}∪ rng(Γ), all expres-
sions in E have unique variables and there are no (x1, e1), (x2, e2) ∈ Γ, x1 6= x2,
y ∈ Var such that y is introduced in more than one of the expression e, e1 or e2.
In other words, each variable is introduced at most once in the configuration.

The definitions of occurring variables and substitution are generalized to
heaps and configurations. The variables occurring in a heap Γ are defined
as vars(Γ) := dom(Γ)∪

⋃
{vars(e) | e ∈ rng(Γ)}. The variables occurring in

a configuration Γ : e are those occurring in Γ or in e. For an injective variable
renaming σ we define σ(Γ) := {(σ(x), σ(e)) | (x, e) ∈ Γ} and σ(Γ : e) := σ(Γ) :
σ(e). Note that by injectivity of σ, for any heap we have that σ(Γ) is again a
heap and that for a well formed configuration Γ : e the result σ(Γ : e) is again
well-formed.

2.2.3 Statements and their Derivation

Two configurations are related in a statement of the form Γ : e ⇓ ∆ : v,
called the in- and the out-configuration of that statement. Such statements
are interpreted as: the expression e in the context of the heap Γ evaluates to
the value v with the heap ∆, according to the rules of Figure 2.1.

Note that this semantics is referred to as ⇓0. This is because the following
sections introduce several steps of modification denoted by ⇓1 ⇓2,. . . When we
give a definition for all the different versions we simply use ⇓, like, e.g., in the
definition of a statement above.

We give a short explanation of the rules in Figure 2.1 followed by examples.

(VarCons) This rule is used to evaluate a variable x which is bound to a con-
structor-rooted term t in the heap. It returns t as a result of the evaluation.

(VarExp) In order to evaluate a variable x that is bound to an expression e =
Γ(x) (which is not a value), this rule starts a sub computation for e. If
a value v is eventually computed, the variable x is updated in the heap
with the binding Γ [x 7→ v].

(Val) A value, i.e., a constructor term or a free variable, is returned without
modifying the heap.

(Fun) This rule performs a simple function unfolding employing a variant of a
rule in the program P . (P is a global parameter of the calculus.) Note
that we allow programs to contain more than only flat expressions. For
convenience, the right-hand sides of the program rules are flattened by

2.2. NATURAL SEMANTICS OF CASE-BASED PROGRAMS 37

(Val) Γ : v ⇓0 Γ : v where v = c(xn) or Γ(v) = v

(VarCons) Γ [x 7→ c(xn)] : x ⇓0 Γ [x 7→ c(xn)] : c(xn)

(VarExp)
Γ : e ⇓0 ∆ : v

Γ [x 7→ e] : x ⇓0 ∆ [x 7→ v] : v
where e 6= x and e 6= c(yn)

(Fun)
Γ : flat(e) ⇓0 ∆ : v
Γ : f(xn) ⇓0 ∆ : v

where f(xn) = e ∈ P

(Let)
Γ [xk 7→ ek] : e ⇓0 ∆ : v

Γ : let {xk = ek} in e ⇓0 ∆ : v

(Or)
Γ : ei ⇓0 ∆ : v

Γ : e1 ? e2 ⇓0 ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓0 ∆ : c(xn) ∆ : σ(ei) ⇓0 Θ : v

Γ : case e of {pk 7→ ek} ⇓0 Θ : v
where i ∈ {1, . . . , k} and c(xn) = σ(pi)

(Guess)
Γ : e ⇓0 ∆ : x ∆ [xn 7→ xn] [x 7→ c(xn)] : ei ⇓0 Θ : v

Γ : case e of {pk 7→ ek} ⇓0 Θ : v
where pi = c(xn) and i ∈ {1, . . . , k}

Figure 2.1: Natural Semantics for Functional Logic Programs

the application of this rule instead of requiring programs to be flattened
beforehand. Note that the variables in f(xn) = e are fresh due to our
definition of a “variant of a program rule” at the end of Section 2.1.

(Let) In order to reduce a let construct, this rule adds the bindings to the heap
and proceeds with the evaluation of the main argument of let.

(Or) This rule non-deterministically evaluates a disjunction by either evaluating
the first or the second argument.

(Select) and (Guess) These rules initiate the evaluation of a case expression by
evaluating the case argument. If a constructor-rooted term is reached, the
rule (Select) is applied to select the appropriate branch and continue with
the evaluation of this branch. If a free variable is returned then rule (Guess)
is used to non-deterministically choose one alternative and continue with
the evaluation of the according branch. Moreover, the heap is updated
with the binding of the free variable to the corresponding pattern.3

A proof or proof tree of a statement corresponds to a derivation using the rules
of Figure 2.1. We frequently refer to the configurations or heaps or expressions
occurring in a proof and give inductive proofs on the structure of a proof tree.

3In the original setting [Albert et al., 2005] rule (Guess) is only applicable for special case-
expressions, called flexible. We will not make this distinction here.

38 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

Example 2.2.2 (Proof Trees) We repeat the program from Example 1.1.9 in
the formalism of this section.

ones = Cons(1,ones)

head x = case x of { Cons(y,ys) → y }

The evaluation of the expression flat(head ones) employing the rules of Fig-
ure 2.1 looks like this where Γ = ∅ [x 7→ 1, y 7→ ones] and Γ′ = Γ [x1 7→ Cons(x, y)]:

∅ [x 7→ 1] [y 7→ ones] : Cons(x, y) ⇓0 Γ : Cons(x, y)
∅ : let {x = 1, y = ones} in Cons(x, y) ⇓0 Γ : Cons(x, y)

∅ : ones ⇓0 Γ : Cons(x, y)
∅ [x1 7→ ones] : x1 ⇓0 Γ [x1 7→ Cons(x, y)] : Cons(x, y)

Γ′ : x ⇓0 Γ′ : 1

∅ [x1 7→ ones] : case x1 of {Cons(y1, y2) 7→ y1} ⇓0 Γ′ : 1
∅ [x1 7→ ones] : head(x1) ⇓0 Γ′ : 1

∅ : let {x1 = ones} in head(x1) ⇓0 Γ′ : 1

Sometimes the following alternative layout for proof trees is more readable.

⇓0

∅ : let {x1 = ones} in head(x1)

⇓0

∅ [x1 7→ ones] : head(x1)

⇓0

∅ [x1 7→ ones] : case x1 of {Cons(y1, y2) 7→ y1}

⇓0

∅ [x1 7→ ones] : x1

⇓0

∅ : ones

⇓0

∅ : let {x = 1, y = ones} in Cons(x, y)

⇓0

[
∅ [x 7→ 1] [y 7→ ones] : Cons(x, y)
Γ : Cons(x, y)

Γ : Cons(x, y)
Γ : Cons(x, y)

Γ [x1 7→ Cons(x, y)] : Cons(x, y)

⇓0

[
Γ′ : x
Γ′ : 1

Γ′ : 1
Γ′ : 1

Γ′ : 1

2.2.4 Correspondence to the Original Approach

The rules of Figure 2.1 feature some differences to the original setting [Albert
et al., 2005]. For example, we flatten the program rules in each function ap-
plication (rule (Fun)) instead of requiring programs to feature flat expressions
only. For most changes it should be obvious that both definitions are equivalent
since they are a simple change of notation. There are two exceptions, however.
The first change is that in rule (VarExp) we go from configuration Γ [x 7→ e] : x
to Γ : e instead of Γ [x 7→ e] : e. In other words we remove the binding x 7→ e
from the heap. This change has semantic implications and will be discussed in
Section 2.3.1 below. The second change is that we do not invent fresh variables
nor perform a renaming in the rules (Let) and (Guess). Especially, this change
requires the assumption that the rules are applied to statements about well-
formed configurations initially. It is then easy to see that the rules will preserve
the invariant that all configurations in a proof are well-formed (Proposition 2.2.3
below). This effectively means that no “name clashes” are possible. Before we

2.2. NATURAL SEMANTICS OF CASE-BASED PROGRAMS 39

can show this simple result we have to be a bit more precise about the freshness
of the variables introduced in a derivation.

The dependence sequence of the configurations in a proof tree is induc-
tively defined as

dep(Γ : e ⇓ Γ ′ : e ′) = Γ : e,Γ′ : e′

dep(
T1

Γ : e ⇓ Γ ′ : e ′
) = Γ : e, dep(T1),Γ′ : e′

dep(
T1 T2

Γ : e ⇓ Γ ′ : e ′
) = Γ : e, dep(T1), dep(T2),Γ′ : e′

and we say that in a proof a configuration C ′ depends on another configuration
C, denoted by C ≺ C ′, when C is before C ′ in the dependence sequence of the
proof. With this notion we can be more precise about the freshness of variables.
Fresh variables are (silently) introduced in the rule (Fun) by employing the
definitions of the variant of a program rule and the flat operation. We now
require that a variable in a configuration C = Γ : flat(e) is fresh within a proof
iff it does not appear in any of the configurations C depends on (in this proof).

Proposition 2.2.3 Let Γ : e be a well-formed configuration. Then any proof
tree of a statement Γ : e ⇓0 ∆ : v contains only well-formed configurations.

Proof. By induction on the structure of the proof tree.
Base cases:
(Val): the claim holds trivially.
(VarCons): If the claim holds for Γ [x 7→ c(xn)] : x then it also holds for
Γ [x 7→ c(xn)] : c(xn) as neither c(xn) nor the rule introduce new variables.
Inductive cases:
(VarExp): If the claim holds for Γ [x 7→ e] : x then it also holds for Γ : e where
e 6= x and e 6= c(yn) as e is not present in the heap Γ and all the variables
introduced in e cannot, by assumption, be introduced by any other expression
in Γ. Therefore, ∆ : v is covered by induction hypothesis. In consequence, the
claim also holds for ∆ [x 7→ v] : v since v does not introduce new variables.
(Fun): If the claim holds for Γ : f(xn) then it also holds for Γ : flat(e) where
f(xn) = e ∈ P as the definitions of a program variant and of the operation flat
ensure that all variables in flat(e) are either in {xn} or fresh. Therefore, ∆ : v
is covered by induction hypothesis.
(Let): If the claim holds for Γ : let {xk = ek} in e then it also holds for
Γ [xk 7→ ek] : e as by assumption the variables introduced by let do not ap-
pear in Γ. Therefore, ∆ : v is covered by induction hypothesis.
(Or): If the claim holds for Γ : e1 ? e2 then it also holds for Γ : ei where
i ∈ {1, 2} as ei is a sub term of e1 ? e2. Therefore, ∆ : v is covered by induction
hypothesis.
(Select): If the claim holds for Γ : case e of {pk 7→ ek} then it also holds for Γ : e
as e is a sub term. Therefore, ∆ : c(xn) is covered by induction hypothesis.
In consequence, the claim also holds for ∆ : σ(ei) since σ(ei) cannot introduce
other variables than ei. In addition the variables in ∆ are either fresh or were
already present in vars(Γ) or vars(e). If they are fresh they cannot be intro-
duced in σ(ei) since Γ : case e of {pk 7→ ek} ≺ ∆ : σ(ei). If they are in vars(Γ)
they cannot be introduced in σ(ei) by assumption that the initial configuration

40 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

Γ : case e of {pk 7→ ek} is well-formed. If they are in vars(e) they can also not
be introduced in σ(ei) as otherwise case e of {pk 7→ ek} would not have unique
variables. Consequently, the configuration ∆ : σ(ei) must be well-formed. The
claim for Θ : v is again covered by induction hypothesis.
(Guess): If the claim holds for Γ : case e of {pk 7→ ek} then it also holds for Γ : e
as e is a sub term. Therefore, ∆ : x is covered by induction hypothesis. In con-
sequence, the claim also holds for ∆ [xn 7→ xn] [x 7→ c(xn)] : ei since analogue
to the discussion for rule (Select) above, no sub term of case e of {pk 7→ ek},
especially not ei,can introduce variables present in ∆. Also ei cannot introduce
any of the variables xn, since that would imply that case e of {pk 7→ ek} does
not have unique variables. Finally, ei can also not introduce the variable x since
in order to be a result of the statement Γ : e ⇓0 ∆ : x, x must be present in ∆.
The claim for Θ : v is again covered by induction hypothesis. �

For future reference we note some simple observations about derivations
with the rules of Figure 2.1. The reader should be able to verify that these
observations can be proven very easily such that any formal treatment can be
omitted. Indeed, we silently assume that the same observations hold for all
variants of natural semantics introduced in this work.

The first observation is that for a rule like (VarExp) the update of the result
heap will not overwrite a value: the variable taken from the heap will not be
reintroduced because all introduced variables are fresh by definition. The second
observation is that if a free variable x is the result of a derivation, it must also
be in the domain of the result heap.

Observation 2.2.4

1) Γ [x 7→ e] : x ⇓ ∆ [x 7→ v] : v implies x 6∈ dom(∆)

2) Γ : e ⇓ ∆ : x implies x ∈ dom(∆) and ∆(x) = x

3) Γ [x 7→ e′] : e ⇓ ∆ : x where x is not reachable from e implies ∆ = ∆′ [x 7→ e′]

2.2.5 A More Abstract Notion of Semantics

The strength of natural semantics lies in the fact that it easily incorporates
the evaluation strategy in the formal framework. Additionally, the concept is
comparably close to that of possible implementations as aspects like sharing
are taken into account. When we develop the formal setting of Section 2.2.3 in
the remainder of this work, we will strive to give results as strong as possible.
Especially, we will always show how to construct a derivation with respect to
some rules for ⇓i from a derivation with respect to ⇓j and the constructed
derivations will be as close as possible. However, we also wish to give a more
intuitive account of our results along the lines of “the values derivable from
expression e are the same for ⇓j and ⇓i, respectively,” To formulate such a
result, we need a more abstract notion of semantics as introduced in the next
definition.

Definition 2.2.5 (Abstract Semantics of an Expression) Let P be a pro-
gram over a constructor-based signature Σ and let e be a Σ-expression. Then
the semantics of an expression [[e]]Pi (with respect to P and ⇓i) is defined by

[[e]]Pi := {c(Γ∗(xn)) | ∅ : flat(e) ⇓i Γ : c(xn)} ∪ {x | ∅ : flat(e) ⇓i Γ : x}

2.3. MODIFICATIONS OF THE SEMANTICS 41

where Γ∗(·) is defined by:

Γ∗(x) = x , if x 6∈ dom(Γ)

Γ [x 7→ y]∗(x) =
{
x , if x = y
Γ∗(y) , if x 6= y

Γ [x 7→ c(xn)]∗(x) = c(Γ∗(xn))
Γ [x 7→ f(xn)]∗(x) = x
Γ [x 7→ let {xk = ek} in e]∗(x) = Γ [xk 7→ ek, x 7→ e]∗(x)
Γ [x 7→ case e of {pk → ek}]∗(x) = x

We may omit the program P if it is clear from the context. Note that, because of
the choice of fresh variables in the calls to flat(·), the sets [[·]]P are infinite when-
ever any value contains a variable. The usual way to cope with this phenomenon
is to consider equivalence classes with respect to renaming of variables. For this
we define between two sets of constructor terms M,N the quasi order � as:

M � N :⇔ ∀v ∈M : ∃σ, v′ ∈ N : σ(v) = v′

where each σ is an injective variable renaming. It is easy to see that � is indeed
a quasi order and it is well known that each quasi order induces an equivalence
relation [Berghammer, 2008]:

M ≡ N :⇔M � N ∧N �M

It is with respect to this equivalence relation that we consider equivalence classes
of a given set of constructor terms M by the notation |M |.

Note that the given notion of semantics is indeed an abstraction from the
original operational semantics in the sense that certain aspects, especially with
regard to the function symbols employed, are disregarded. It is in this sense
that we call [[e]]Pi the “(abstract) semantics of” e (in the context of program P).

Example 2.2.6 (Abstract Semantics) In correspondence with Example 2.2.2
the semantics of (head(ones)) is

[[head(ones)]]P0 = |{1}|

For a more interesting example the reader might want to reconsider the def-
initions from Examples 1.1.4 and 1.1.10 to verify that the semantics of the
expression double(Cons(1,Nil)) is:

[[double(Cons(1,Nil))]]P0 = |{Cons(1,x)}|

The next step will be a justification of our change to rule (VarExp) followed
by a simplification of the rules of Figure 2.1.

2.3 Modifications of the Semantics

We will apply two modifications to the original semantics [Albert et al., 2005].
Firstly, we will discuss why we changed rule (VarExp) (Section 2.3.1), followed
by a discussion of rule (VarCons) which can be eliminated from the calculus
(Section 2.3.2).

42 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

2.3.1 Changing Rule (VarExp)

Unfortunately, the design of the original semantics [Albert et al., 2005] shows
an anomaly for circular let bindings when the evaluation of the bindings induces
non-deterministic branching. The root of the problem can be associated with
the rule (VarExp). In contrast to the original work for functional languages by
Launchbury [1993], Albert et al. [2005] do not remove a binding looked up in the
heap. Whereas the corresponding original rule, (called “Variable” [Launchbury,
1993]) looks more like our rule (VarExp) of Figure 2.1, the version of Albert et
al. is defined as follows.

(OrigVarExp)
Γ [x 7→ e] : e ⇓′ ∆ : v

Γ [x 7→ e] : x ⇓′ ∆ [x 7→ v] : v
where e 6= x and e 6= c(yn)

The following excerpt of [Albert et al., 2005] demonstrates that the authors
clearly think that this decision “does not affect the natural semantics since
black holes have no value”, but that it is only a step towards the work of Sestoft
[1997].

(VarExp) This rule achieves the effect of sharing. If the variable to
be evaluated is bound to some expression in the heap, then
the expression is evaluated and the heap is updated with the
computed value; finally, we return this value as the result. In
contrast to Launchbury (1993), we do not remove the binding
for the variable from the heap; this becomes useful to generate
fresh variable names easily. Sestoft (1997) solves this problem
by introducing a variant of Launchbury’s relation which is la-
beled with the names of the already used variables. The only
disadvantage of our approach is that black holes (a detectably
self-dependent infinite loop) are not detected at the semantical
level. However, this does not affect the natural semantics since
black holes have no value. [Albert et al., 2005, p.13]

In contrast to Launchbury’s approach [Launchbury, 1993], a variable looked up
in the heap is not deleted from the heap when evaluating its binding to head-
normal form. In a deterministic setting, omitting this “black hole detection”
does indeed not affect the semantics. The difference only consists of a finitely
failing derivation on the one hand and the attempt to construct an infinite proof
tree on the other hand. But in combination with non-determinism, multiple
(possibly different) updates of a variable in the heap are possible. Therefore, it
may happen that “black holes” have a value after all, as the following derivation
shows:

2.3. MODIFICATIONS OF THE SEMANTICS 43

Γ : T ⇓′ Γ : T
Γ : T ? ... ⇓′ Γ : T

Γ : x ⇓′ Γ [x 7→ T] : T
Γ [x 7→ T] : F ⇓′ Γ [x 7→ T] : F

Γ : case x of {T 7→ F} ⇓′ Γ [x 7→ T] : F
Γ : T ? case x of {T 7→ F} ⇓′ Γ [x 7→ T] : F

Γ : x ⇓′ Γ [x 7→ T] [x 7→ F] : F
∅ : let {x = T ? case x of {T 7→ F}} in x ⇓′ Γ [x 7→ T] [x 7→ F] : F

where Γ := ∅ [x 7→ T ? case x of {T 7→ F}]

The variable x is looked up in the heap twice. Each time a different non-
deterministic branch is chosen. Hence, x is bound to T as well as to F . In
consequence, the given rule (OrigVarExp) violates the single assignment property
which would otherwise hold for the calculus. In addition “black holes” now may
have a value against the explicit statement quoted above.

In contrast, the rule (VarExp) from Figure 2.1 does not induce a similar
behavior. With this rule the problematic derivation is no longer valid because
there is no rule to cover the situation that x is looked up in the empty heap.

∅ : x ⇓0 〈〈result undefined〉〉
∅ : case x of {T 7→ F} ⇓0 〈〈result undefined〉〉
∅ : T ? case x of {T 7→ F} ⇓0 〈〈result undefined〉〉

∅ [x 7→ T ? case x of {T 7→ F}] : x ⇓0 〈〈result undefined〉〉
∅ : let {x = T ? case x of {T 7→ F}} in x ⇓0 〈〈result undefined〉〉

We think that this speaks clearly for the version of the rule which we have
chosen.

2.3.2 Elimination of (VarCons)

An observation about the rules of Figure 2.1 is that the rule (VarCons) is not
really needed. If the rule (VarExp) could also be applied in the case that e =
c(xn), (VarCons) would be a simple short-cut for applying rule (VarExp) directly
followed by (Val). Therefore, a simplifying step introduces the following rule
instead of the two rules (VarCons) and (VarExp).

(Var)
Γ : e ⇓1 ∆ : v

Γ [x 7→ e] : x ⇓1 ∆ [x 7→ v] : v
where e 6= x

For ease of reference the whole semantics is shown in Figure 2.2. It is easy to see
that this change of the rules does not imply a change in the actual semantics,
which is the content of the following theorem.

Lemma 2.3.1 Γ : e ⇓0 ∆ : v iff Γ : e ⇓1 ∆ : v

Proof. “⇒”: Replace any application Γ [x 7→ c(xn)] : x ⇓0 Γ [x 7→ c(xn)] : c(xn)
of rule (VarCons) by the derivation

Γ : c(xn) ⇓1 Γ : c(xn)
Γ [x 7→ c(xn)] : x ⇓1 Γ [x 7→ c(xn)] : c(xn)

44 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

(Val) Γ : v ⇓1 Γ : v where v = c(xn) or Γ(v) = v

(Var)
Γ : e ⇓1 ∆ : v

Γ [x 7→ e] : x ⇓1 ∆ [x 7→ v] : v
where e 6= x

(Fun)
Γ : flat(e) ⇓1 ∆ : v
Γ : f(xn) ⇓1 ∆ : v

where f(xn) = e ∈ P

(Let)
Γ [xk 7→ ek] : e ⇓1 ∆ : v

Γ : let {xk = ek} in e ⇓1 ∆ : v

(Or)
Γ : ei ⇓1 ∆ : v

Γ : e1 ? e2 ⇓1 ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓1 ∆ : c(xn) ∆ : σ(ei) ⇓1 Θ : v

Γ : case e of {pk 7→ ek} ⇓1 Θ : v
where i ∈ {1, . . . , k} and c(xn) = σ(pi)

(Guess)
Γ : e ⇓1 ∆ : x ∆ [xn 7→ xn] [x 7→ c(xn)] : ei ⇓1 Θ : v

Γ : case e of {pk 7→ ek} ⇓1 Θ : v
where pi = c(xn) and i ∈ {1, . . . , k}

Figure 2.2: Semantics without rule VarCons

“⇐”: For any application of rule (Var) of the form

Γ : e ⇓1 ∆ : v
Γ [x 7→ e] : x ⇓1 ∆ [x 7→ v] : v

there are two cases.

a) e is not of the form c(xn), then we can replace the application by an appli-
cation of rule (VarExp) to get

Γ : e ⇓1 ∆ : v
Γ [x 7→ e] : x ⇓1 ∆ [x 7→ v] : v

b) e is of the form c(xn), then the derivation must be of the following form.

Γ : c(xn) ⇓1 Γ : c(xn)
Γ [x 7→ c(xn)] : x ⇓1 Γ [x 7→ c(xn)] : c(xn)

Therefore we have ∆ = Γ and v = e and we can replace the application by
an application of rule (VarCons).

Γ [x 7→ e] : x ⇓1 ∆ [x 7→ v] : v

�

Corollary 2.3.2 For all expressions e holds [[e]]P0 = [[e]]P1 .

2.3. MODIFICATIONS OF THE SEMANTICS 45

Proof. Direct consequence of Definition 2.2.5 and Lemma 2.3.1. �

The next chapter can also be seen as a simplification of the calculus in a
certain sense. There we show that free variables can be replaced by genera-
tor functions, which is a transfer of results previously obtained by [Antoy and
Hanus, 2006] and [Dios and López-Fraguas, 2006] to our setting. It is a simpli-
fication of the calculus since with that result it is possible to omit rule (Guess).

46 CHAPTER 2. FUNCTIONAL LOGIC PROGRAMS

Chapter 3

Elimination of Free
Variables

Antoy and Hanus [2006] presented a surprising result that under certain circum-
stances one can replace free variables by generator functions. Their results are
proven for a term-rewriting based semantics which does not consider sharing.
A similar result was presented in [Dios and López-Fraguas, 2006] in the context
of the Constructor-based ReWriting Logic (CRWL), a different semantic frame-
work for functional logic languages [González-Moreno et al., 1999b], based on a
rewriting logic which does also not explicitly consider sharing. It will turn out
that the principle ideas of [Antoy and Hanus, 2006, Dios and López-Fraguas,
2006] will be very useful for our aim to translate functional logic programs into
purely functional programs. For this reason, we extend these results to the more
concrete and operational setting of the natural semantics introduced in the pre-
vious chapter. A first version of the contents of this chapter were published
as Braßel and Huch [2007a], but all proofs have been substantially revised and
extended.

The general contents of this chapter are:

a) The semantics defined in the previous chapter is extended to collect some
crucial information about the occurrence of free variables in a derivation
(Section 3.1).

b) The notion of a generator function is defined followed by a proof that the
additional information from a) can be used to replace free variables by gen-
erator functions (Section 3.2).

c) A proof of the dual direction is given that for derivations in the context of
programs employing generators we can construct an equivalent derivation
with free variables (Section 3.2.3.

d) Finally, the results of this chapter are collected in a summarizing Theo-
rem 3.3.

47

48 CHAPTER 3. ELIMINATION OF FREE VARIABLES

3.1 Treatment of Variable Chains

A heap contains a variable chain iff there is an x ∈ dom(Γ) such that Γ(x)
is a variable. The fact that logic variables are represented by trivial variable
chains implies that also non-trivial chains cannot be avoided by simple syntactic
restrictions, as illustrated by the following example.

Example 3.1.1 (Variable Chains) The evaluation of the expression let {x =
x, y = id(x)} in head(y) in the context of the empty heap will result in the
configuration

∅ [x1 7→ x1, x2 7→ x2, x 7→ Cons(x1, x2), y 7→ x] : x1

Note especially that the resulting heap contains the variable chain (y, x). Exactly
the same result configuration is computed for the slightly different expression
let {x = x, y = x} in head(x).

Variable chains cause technical problems, especially when we consider the
elimination of free variables in the next section. Even though we have not
yet presented the idea of this elimination, the reader may be able to imagine
the technical problems from looking at the above example. When constructing
proof trees without free variables from trees with variables, we need to treat
the derivations of the two expressions of Example 3.1.1 differently. For the first
expression we would like to see the variable y also updated to Cons(x1, x2) and
in the second derivation we would like to keep the variable chain as y has never
been touched during the derivation. This is the reason that we have to add
more information to derivations in order to distinguish the two cases. We call
this new information access tokens. In this case, such a token is denoted by
the symbol “∗” and the intended meaning is that such a token is added to those
variables which have been accessed in the derivation. As we will use access
tokens in another context later (cf. Section 3.2.1), we will assume any set T of
tokens.

Definition 3.1.2 (Heap with Access Tokens) Let T be a set, called the to-
ken set and E′ ⊆ FEΣ a set of flat expressions. Then a heap with access
tokens Γ is a subset of Var × FEΣ ∪ Var × T × E′ iff the set {(x, e) | (x, e) ∈
Γ ∨ ∃t ∈ T : (x, t, e) ∈ Γ ∧ e ∈ E′} is a heap. In other words the elements
of a heap with access tokens are either of the form (x, e) ∈ Γ or (x, t, e′) ∈ Γ
where t ∈ T and e′ ∈ E′. For a heap update we write as usual Γ [x 7→ e] to
add the binding (x, e) to Γ and Γ

[
x

t−→ e′
]

to add the binding (x, t, e′). During
derivations we will never lookup tokens in the heap. The matching Γ [x 7→ e]
will therefore denote that x is mapped to e in the considered heap regardless of
with or without token.

In this section we will consider heaps with T = {∗} and E′ = Var. As
there is no matching on heap tokens the rules of Figure 3.1 clearly constitute a
conservative extension of ⇓1 .

Example 3.1.3 (Access Tokens) Reconsider the expressions of Example 3.1.1.
With the rules of Figure 3.1 the evaluation of the expression let {x = x, y =
id(x)} in head(y) in the context of the empty heap results in the configuration

∅
[
x1
∗−→ x1, x2 7→ x2, x 7→ Cons(x1, x2), y ∗−→ x

]
: x1

3.1. TREATMENT OF VARIABLE CHAINS 49

(ValV) Γ [x 7→ x] : x ⇓2 Γ
[
x
∗−→ x

]
: x

(ValC) Γ : c(xn) ⇓2 Γ : c(xn)

(VarV)
Γ : e ⇓2 ∆ : y

Γ [x 7→ e] : x ⇓2 ∆
[
x
∗−→ y

]
: y

where e 6= x

(VarC)
Γ : e ⇓2 ∆ : c(xn)

Γ [x 7→ e] : x ⇓2 ∆ [x 7→ c(xn)] : c(xn)
where e 6= x

(Fun)
Γ : flat(e) ⇓2 ∆ : v
Γ : f(xn) ⇓2 ∆ : v

where f(xn) = e ∈ P

(Let)
Γ [xk 7→ ek] : e ⇓2 ∆ : v

Γ : let {xk = ek} in e ⇓2 ∆ : v

(Or)
Γ : ei ⇓2 ∆ : v

Γ : e1 ? e2 ⇓2 ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓2 ∆ : c(xn) ∆ : σ(ei) ⇓2 Θ : v

Γ : case e of {pk 7→ ek} ⇓2 Θ : v
where i ∈ {1, . . . , k} and c(xn) = σ(pi)

(Guess)
Γ : e ⇓2 ∆ : x ∆ [xn 7→ xn] [x 7→ c(xn)] : ei ⇓2 Θ : v

Γ : case e of {pk 7→ ek} ⇓2 Θ : v
where pi = c(xn) and i ∈ {1, . . . , k}

Figure 3.1: Conservative extension to keep track of updated variables

The evaluation of let {x = x, y = x} in head(x), in contrast results in

∅
[
x1
∗−→ x1, x2 7→ x2, x 7→ Cons(x1, x2), y 7→ x

]
: x1

With this we can see that y was accessed in the first but not in the second
derivation.

The following proposition states that the rules of Figure 3.1 correctly keep
track of those variable chains which have been accessed during evaluation. And
the next definition introduces what we mean by this “correctness” of book keep-
ing.

Definition 3.1.4 A heap with access tokens Γ features correct variable up-
dates iff for all x ∈ dom(Γ) with (x, ∗, y) ∈ Γ it holds that Γ(y) is of the form
c(xn) whenever y ∈ dom(Γ).

Let z be a variable. A heap with access tokens Γ features correct variable
updates with exception of z iff (z, ∗, z) ∈ Γ and for all x, y with (x, ∗, y) ∈ Γ
there are two cases:

a) y = z and, accordingly, we have (y, ∗, y) ∈ Γ or

b) y 6= z and Γ(y) is of the form c(xn) whenever y ∈ dom(Γ).

50 CHAPTER 3. ELIMINATION OF FREE VARIABLES

Proposition 3.1.5 Let D := Γ : e ⇓2 C be a derivation using the rules in
Figure 3.1. If Γ features correct variable updates then so does any heap occurring
in an in-configuration of D and for all out-configurations ∆ : v in D holds that
∆ features correct variable updates whenever v = c(xn) and ∆ features correct
variable updates with exception of v whenever v ∈ Var.

Proof. By induction on the structure of the derivation D.
Base Cases:
(ValV): For Γ [x 7→ x] : x ⇓2 Γ

[
x
∗−→ x

]
: x the claim holds because for all

z ∈ dom(Γ) with (z, ∗, y) ∈ Γ
[
x
∗−→ x

]
we have two cases:

1. if z = x then we directly have y = x and therefore (y, ∗, y) ∈ Γ
[
x
∗−→ x

]
by definition of heap update and

2. if z 6= x then we have

(z, ∗, y) ∈ Γ
[
x
∗−→ x

]
⇒ (z, ∗, y) ∈ Γ [x 7→ x] def heap update, z 6= x
⇒ (y, c(xn)) ∈ Γ [x 7→ x] ∨ y 6∈ dom(Γ) by assumption
⇒ (y, c(xn)) ∈ Γ

[
x
∗−→ x

]
∨ y 6∈ dom(Γ) def heap, y 6= x (def (ValV))

(ValC): For Γ : c(xn) ⇓2 Γ : c(xn) the claim holds trivially.

Inductive Cases:
(VarV): If Γ [x 7→ e] features correct variable updates then so does Γ because e 6=
x. Therefore, the induction hypothesis implies that ∆ features correct variable
updates with the exception of y. Especially, we have (y, ∗, y) ∈ ∆ and x 6∈
dom(∆) (cf. Observation 2.2.4) and, therefore, ∆

[
x
∗−→ y

]
also features correct

variable updates with the exception of y because for all (z, ∗, y′) ∈ ∆
[
x
∗−→ y

]
we have two cases:

1. If z = x we have y′ = y and, thus, (y, ∗, y) ∈ ∆
[
x
∗−→ y

]
as (y, ∗, y) ∈ ∆

by assumption.

2. If z 6= x we have

(z, ∗, y′) ∈ ∆
[
x
∗−→ y

]
⇒ (z, ∗, y′) ∈ ∆ def heap update, z 6= x
⇒ ∆(y′) = v ∨ y 6∈ dom(Γ)

where v = c(xn) or v = y′ = y by assumption
⇒ ∆

[
x
∗−→ y

]
(y′) = v ∨ y 6∈ dom(Γ)

x 6∈ dom(∆)(Observation 2.2.4), y ∈ dom(Γ) implies y′ 6= x

(VarC): If Γ [x 7→ e] features correct variable updates then so does Γ because
e 6= x. Therefore, ∆ features correct variable updates by induction hypothesis

3.2. ELIMINATION OF FREE VARIABLES 51

and, thus, so does ∆ [x 7→ c(xn)] because for all (z, ∗, y′) ∈ ∆ [x 7→ c(xn)] holds:

(z, ∗, y) ∈ ∆ [x 7→ c(xn)]
⇒ (z, ∗, y) ∈ ∆ def heap update
⇒ (y, c′(ym)) ∈ ∆ ∨ y 6∈ dom(Γ) by assumption
⇒ (y, c′(ym)) ∈ ∆ [x 7→ c(xn)] ∨ y 6∈ dom(Γ)

x 6∈ dom(∆) (Observation 2.2.4) , y ∈ dom(Γ) implies y 6= x

(Fun), (Or): The claim holds trivially or stems directly from the induction
hypothesis because these rules do not change any heap nor the resulting value.
(Let): If Γ features correct variable updates then so does Γ [xk 7→ ek] because

• it holds that xk 6∈ dom(Γ) as the configuration is well formed (cf. Propo-
sition 2.2.3) and, thus, there cannot be (x, ∗, xi) ∈ Γ for xi ∈ {xk} and

• none of the new heap entries are adorned with ∗ and therefore do not
constrain the claim for Γ [xk 7→ ek].

Thus, that ∆ features correct variable updates with the possible exception of v
directly stems from the induction hypothesis.
(Select):
As Γ features correct variable updates the induction hypothesis yields that so
does ∆ (with no exception – the result value is of the form c(xn)). Therefore,
the claim for Θ : v is also covered by induction hypothesis.
(Guess): As Γ features correct variable updates by assumption ∆ features cor-
rect variable updates with exception of x by induction hypothesis. This implies
that the modified heap ∆ [xn 7→ xn] [x 7→ c(xn)] features correct variable up-
dates (with no exception) because

• it holds that xn 6∈ dom(Γ) as the configuration is well formed (cf. Propo-
sition 2.2.3) and, thus, there cannot be (x, ∗, xi) ∈ Γ for xi ∈ {xn} and

• otherwise (x, ∗, x) is exchanged by (x, c(xn)) by definition of variable up-
date.

Therefore, the claim for Θ : v is covered by induction hypothesis. �

Note especially that the empty heap features correct variable updates. There-
fore, it is no restriction that we only treat ⇓2 derivations in the following.

As a last thought on the topic of variable chains: why do we not simply
forbid variable chains on the syntactic level? The answer is twofold. Firstly,
example 3.1.1 shows that variable chains may come up during evaluation anyway.
It is the case, however, that such chains are always of a special form (namely
either trivial (x, x) or of at most length 1, i.e., (x, y), (y, v) where v is either y
or a value c(xn). Secondly, therefore, in order to eliminate variables we would
have to prove this fact about the form of variable chains. And that proof would
not be any easier than the one of Proposition 3.1.5. (Indeed it would look very
similar.) All in all we prefer to not restrict programs artificially and rather take
the complication of changing the calculus. The first solution would affect the
future use of the calculus, while the second is an intermediate step, only.

52 CHAPTER 3. ELIMINATION OF FREE VARIABLES

(Val) Γ : c(xn) ⇓3 Γ : c(xn)

(Var)
Γ : e ⇓3 ∆ : v

Γ [x 7→ e] : x ⇓3 ∆ [x 7→ v] : v

(Fun)
Γ : flat(e) ⇓3 ∆ : v
Γ : f(xn) ⇓3 ∆ : v

where f(xn) = e ∈ P

(Let)
Γ [xk 7→ ek] : e ⇓3 ∆ : v

Γ : let {xk = ek} in e ⇓3 ∆ : v

(Or)
Γ : ei ⇓3 ∆ : v

Γ : e1 ? e2 ⇓3 ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓3 ∆ : c(xn) ∆ : σ(ei) ⇓3 Θ : v

Γ : case e of {pk 7→ ek} ⇓3 Θ : v
where i ∈ {1, . . . , k} and c(xn) = σ(pi)

Figure 3.2: Semantics without free variables

3.2 Elimination of Free Variables

We now introduce the idea of a generator. As hinted above, generators will
allow us to replace free variables by non-deterministic derivations. This will
allow us to exchange the derivation rules used so far by the new rules shown in
Figure 3.2.

Replacing free variables by generators is a program transformation of a given
program over signature Σ which adheres to the following basic idea.

1. Add to each program the definition of the special function generate:

generate = (let {xn1 = generate} in c1(xn1))
? . . .
? (let {xnk

= generate} in ck(xnk
))

where ck are all constructors in CΣ and ci has arity ni for all 1 ≤ i ≤ k.

2. Replace in each configuration and each expression in the program bindings
of the form x = x or x 7→ x by x = generate or x 7→ generate, respectively.

Note that the generator normally is type oriented, i.e., it generates only values of
the correct type. This greatly prunes the search space and can be implemented
by approaches analogous to those used for type classes [Wadler and Blott, 1989].

We now turn to the proof that all free variables in a derivation and program
can be replaced by such generators. Naturally, we have to show two directions,
namely that from any derivation with free variables we can construct one with-
out (Section 3.2.2) and vice versa (Section 3.2.3). Finally, in Section 3.3 we will
put together the obtained results in the form of a Theorem.

In order to obtain the strongest possible result, we will map derivations in
⇓2 (Figure 3.1) not to the rules without free variables (Figure 3.2) but to a
conservative extension of those rules as shown in Figure 3.3 (Section 3.2.1).

3.2. ELIMINATION OF FREE VARIABLES 53

(Val) Γ : c(xn) ⇓4 Γ : c(xn) | ()

(Var)
Γ : e ⇓4 ∆ : v | (y)

Γ [x 7→ e] : x ⇓4 ∆
[
x

ad(x,e,(y))−−−−−−−→ v

]
: v | ad(x, e, (y))

(Fun)
Γ : flat(e) ⇓4 ∆ : v | (x)
Γ : f(xn) ⇓4 ∆ : v | (x)

where f(xn) = e ∈ P

(Let)
Γ [xk 7→ ek] : e ⇓4 ∆ : v | (x)

Γ : let {xk = ek} in e ⇓4 ∆ : v | (x)

(Or)
Γ : ei ⇓4 ∆ : v | (x)

Γ : e1 ? e2 ⇓4 ∆ : v | (x)
where i ∈ {1, 2}

(Select)
Γ : e ⇓4 ∆ : c(xn) | (x) ud(x)(∆) : σ(ei) ⇓4 Θ : v | (y)

Γ : case e of {pk 7→ ek} ⇓4 Θ : v | (y)
where i ∈ {1, . . . , k} and c(xn) = σ(pi)

Figure 3.3: Conservative extension: keep track of updated generator values

3.2.1 Keeping Track of Generator Updates

As seen in the previous section we need to conservatively extend the calculus
with free variables to obtain information about variable updates. Analogously,
we also need a conservative extension of the calculus without free variables
(Figure 3.2) to obtain information about the evaluated generators. We will
again use access tokens for this extension (Definition 3.1.2). This time we will
use so called adornments as tokens. Such an adornment is either empty () or
a variable x. The notation (x) should denote an adornment which might be
either () or x, i.e., a matching on any information possible. As can be seen in
Figure 3.3 adornments are always added to value updates. With regard to the
definition of heaps with access tokens 3.1.2, we have therefore T = {()} ∪ Var
and that E′ is the set of flat constructor terms (values). Whenever the binding
of a variable x is marked with the token y, it means that x was updated with
a value which stems from an erlier evaluation of a generator originally found in
the heap as the binding of y.

The rules of Figure 3.3 do not only add adornments to the heap but also
to each out-configuration. This adornment witnesses whether the current result
value stems from evaluating a generator. In Figure 3.3 we make use of two
auxiliary functions ad and ud, (adorn and unadorn, respectively). The function
ad defines whether the current adornment has to be changed to x or whether
to keep the old adornment. The function ud eliminates a given adornment from
the given heap.

Definition 3.2.1 (Functions ad and ud) Selecting an adornment depending
on expression e:

ad(x, e, (y)) =
{

x , if e = generate
(y) , otherwise

54 CHAPTER 3. ELIMINATION OF FREE VARIABLES

Eliminating an adornment from a heap:

ud()(∆) = ∆
udx(∆) = ∆ if there is no e with (x, x, e) ∈ ∆
udx(∆

[
x

x−→ e
]
) = ∆ [x 7→ e]

The following derivation serves several purposes. It illustrates the evaluation
of a generator and the calculation with adornments. In addition it will be useful
for future reference in proofs. As seen below, the evaluation of the special
function generate is a linear proof tree which non-deterministically chooses one
of the constructors of the program as a value.

Proposition 3.2.2

Γ [x 7→ generate] : x ⇓4 Γ [xn 7→ generate]
[
x

x−→ c(xn)
]

: c(xn) | x

Proof.

∆ := Γ [xn 7→ generate] : c(xn) ⇓4 ∆ : c(xn) | ()
Γ : ei = let {xn = generate} in c(xn) ⇓4 ∆ : c(xn) | ()

×i−1
j=1

(
Γ : ej+1 ? . . . ? ek ⇓4 ∆ : c(xn) | ()

Γ : ej ? ej+1 ? . . . ? ek ⇓4 ∆ : c(xn) | ()

)
Γ : generate ⇓4 ∆ : c(xn) | ()

Γ [x 7→ generate] : x ⇓4 Γ [xn 7→ generate]
[
x

x−→ c(xn)
]

: c(xn) | x

�

3.2.2 Replacing Free Variables by Generators

We eliminate free variables in configurations, heaps, expressions, and programs
by replacing them with a call to the special function generate. This replacement
is realized by a family of mappings gen(·). On some occasions we also need
to replace a free variable with a value of the form c(xn). This value will then
be an additional parameter of gen(·), written genc(xn)(·). Likewise, when we
transform the binding of a variable x we need to know that variable. This will
also be an additional parameter and in this case we write genx(·).

3.2. ELIMINATION OF FREE VARIABLES 55

Definition 3.2.3 (Free Variable Elimination gen())

gen(Γ : e) = gen(Γ) : gen(e)

genc(xn)(∆ : c′(ym)) = gen(∆ : c′(ym)) | ()
genc(xn)(∆ : x) = genc(xn)(∆ [xn 7→ xn]) : c(xn) | x

gen(Γ) = {(x, genx(e)) | (x, e) ∈ Γ}
∪ {(x, y,Γ(y)) | (x, ∗, y) ∈ Γ, y ∈ dom(Γ)}
∪ {(x, y) | (x, ∗, y) ∈ Γ, y 6∈ dom(Γ)}

genc(xn)(Γ) =

{
gen(Γ′ [x 7→ c(xn)])

[
x

x−→ c(xn)
]

if Γ = Γ′
[
x
∗−→ x

]
gen(Γ) otherwise

genx(x) = generate
genx(e) = gen(e), if e 6= x

gen(x) = x

gen(s(en)) = s(gen(en))
gen(e1 ? e2) = gen(e1) ? gen(e2)

gen((f)case e of {pk → ek}) = case gen(e) of {pk → gen(ek)}
gen(let {xk = ek} in e) = let {xk = genxk

(ek)} in gen(e)

gen(P) = ln = gen(rn) where P = ln = rn

Apart from the introduction of generator operations, the main aspect to note
about Definition 3.2.3 is that variable chains with an access token (x, ∗, y) are
replaced by the binding of the chained variable, i.e., (x, x,Γ(y)) whenever y ∈
dom(Γ). We will soon see that this detail plays a crucial role when constructing
derivations with generators from ones without. Before we will indulge in the
details of the corresponding proof, we need to consider a rather technical detail
concerning the relation between the transformations of expressions gen(·) and
flat(·).

Proposition 3.2.4 For any expression e holds that

flat(gen(e)) = gen(flat(e))

56 CHAPTER 3. ELIMINATION OF FREE VARIABLES

Proof. By a simple induction on the structure of e where the only non-trivial
case is e = s(en):

flat(gen(s(en)))
= flat(s(gen(en))) def gen()

= let {ym = flat(e′m)} in s(xn)
where (ym, e′m, xn) = varArgs(gen(en)) def flat()

= let {ym = flat(gen(e′′m))} in s(xn)
where (ym, gen(e′′m), xn) = varArgs(gen(en)) def varArgs()

= let {ym = flat(gen(e′′m))} in s(xn)
where (ym, e′′m, xn) = varArgs(en) def varArgs(),gen(x)=x

= let {ym = gen(flat(e′′m))} in s(xn)
where (ym, e′′m, xn) = varArgs(en) ind. hyp.

= let {ym = genym
(flat(e′′m))} in s(xn)

where (ym, e′′m, xn) = varArgs(en) flat(e′′m) 6= ym by defs flat(), varArgs()

= let {ym = genym
(flat(e′′m))} in s(gen(xn))

where (ym, e′′m, xn) = varArgs(en) def gen()

= gen(let {ym = flat(e′′m)} in s(xn))
where (ym, e′′m, xn) = varArgs(en) def gen()

= gen(flat(s(en))) def flat()

�

The next proposition illustrates how gen(·) behaves on heaps and configura-
tions.

Proposition 3.2.5 (Generator Evaluation) For any heap Γ which features
correct variable updates (Definition 3.1.4) and any variable x with Γ(x) = x,
any n-ary constructor c, and any fresh variables xn, we have

gen(Γ [x 7→ x] : x) ⇓4 genc(xn)(Γ
[
x
∗−→ x

]
: x)

Proof. We have by Definition 3.2.3

gen(Γ [x 7→ x] : x)
= gen(Γ [x 7→ x]) : gen(x)
= gen(Γ) [x 7→ generate] : x

and

genc(xn)(Γ
[
x
∗−→ x

]
: x)

= genc(xn)(Γ
[
x
∗−→ x

]
[xn 7→ xn]) : c(xn) | x def 3.2.3

= genc(xn)(Γ [xn 7→ xn]
[
x
∗−→ x

]
) : c(xn) | x def heap update

= gen(Γ [xn 7→ xn] [x 7→ c(xn)])
[
x

x−→ c(xn)
]

: c(xn) | x def 3.2.3

= gen(Γ [xn 7→ xn])
[
x

x−→ c(xn)
]

: c(xn) | x def heap update,
Definition 3.1.4

= gen(Γ)
[
xn 7→ generate, x

x−→ c(xn)
]

: c(xn) | x def 3.2.3

3.2. ELIMINATION OF FREE VARIABLES 57

The step stemming on Definition 3.1.4 is noteworthy. Since by assumption
Γ [x 7→ x] features correct variable updates there cannot exist (y, ∗, x) ∈ Γ.
Therefore it holds that gen(Γ [x 7→ c(xn)]) = gen(Γ) [x 7→ c(xn)].

Because of the equalities derived above the claim is a direct consequence of
Proposition 3.2.2. �

Next we show that any derivation with free variables can be reconstructed
as a derivation with generators.

Lemma 3.2.6 Let P be a program over signature Σ. For all well formed config-
urations Γ : e,∆ : v where Γ features correct variable updates and all constructor
symbols c′ ∈ Σ(m) ∩CΣ and all variables ym we have that Γ : e ⇓2 ∆ : v implies
gen(Γ : e) ⇓4 genc′(ym)(∆ : v) in gen(P).

The central idea of the following proof is that whenever the intermediate result
of a sub computation in ⇓2 is a free variable, the corresponding application of
(Val) Γ : x ⇓2 Γ : x is replaced by the generator evaluation constructed for
the proof of Proposition 3.2.2. The differences between the resulting heaps is
effectively eliminated when the rule (Guess) is applied for ⇓2. The remaining
proof is concerned with the technical details of showing that the mappings of
Definition 3.2.3 correctly replace free variables by calls to the generator function
to the chosen constructor, respectively.
Proof. (Of Lemma 3.2.6) By induction on the structure of the proof tree.
Base cases:
(ValV): We have Γ [x 7→ x] : x ⇓2 Γ

[
x
∗−→ x

]
: x implies gen(Γ [x 7→ x] : x) ⇓4

genc′(ym)(Γ
[
x
∗−→ x

]
: x) by Proposition 3.2.5.

(ValC): We have Γ : c(xn) ⇓2 Γ : c(xn) implies gen(Γ : c(xn)) ⇓4 genc′(ym)(Γ :
c(xn)) because genc′(ym)(Γ : c(xn)) = gen(Γ : c(xn)) | () = gen(Γ) : c(xn) | ().
Inductive cases:
(VarV): The induction hypothesis in this case is that Γ : e ⇓2 ∆ : y implies
gen(Γ : e) ⇓4 genc′(ym)(∆ : y) where e 6= x. With this assumption we have
to show that Γ [x 7→ e] : x ⇓2 ∆

[
x
∗−→ y

]
: y implies gen(Γ [x 7→ e] : x) ⇓4

genc′(ym)(∆
[
x
∗−→ y

]
: y). This claim holds because we have

gen(Γ : e) ⇓4 genc′(ym)(∆ : y)
= gen(Γ) : gen(e) ⇓4 gen(∆ [ym 7→ ym] [y 7→ c′(ym)])

[
y

y−→ c′(ym)
]

: c′(ym) | y

gen(Γ) [x 7→ genx(e)] : x ⇓4 gen(∆ [ym 7→ ym] [y 7→ c′(ym)]) [x 7→ c′(ym)]
[
y

y−→ c′(ym)
]

: c′(ym) | y

= gen(Γ [x 7→ e] : x) ⇓4 genc′(ym)(∆
[
x
∗−→ y

]
: y)

as by Proposition 3.1.5 we have (y, ∗, y) ∈ ∆ and in this case genx(e) = gen(e).
(VarC): The induction hypothesis in this case is that Γ : e ⇓2 ∆ : c(xn) implies
gen(Γ : e) ⇓4 genc′(ym)(∆ : c(xn)) where e 6= x. With this assumption we have
to show that Γ [x 7→ e] : x ⇓2 ∆ [x 7→ c(xn)] : c(xn) implies gen(Γ [x 7→ e] : x) ⇓4

genc′(ym)(∆ [x 7→ c(xn)] : c(xn)). This claim holds because we have

gen(Γ : e) ⇓4 genc′(ym)(∆ : c(xn))
= gen(Γ) : gen(e) ⇓4 gen(∆) : c(xn) | ()

gen(Γ) [x 7→ genx(e)] : x ⇓4 gen(∆) [x 7→ c(xn)] : c(xn) | ()
= gen(Γ [x 7→ e] : x) ⇓4 genc′(ym)(∆ [x 7→ c(xn)] : c(xn))

58 CHAPTER 3. ELIMINATION OF FREE VARIABLES

where gen(∆ [x 7→ c(xn)]) = gen(∆) [x 7→ c(xn)] as Γ features correct variable
updates, in consequence, ∆ does by Proposition 3.1.5.
(Fun): The induction hypothesis in this case is that Γ : flat(e) ⇓2 ∆ : v implies
gen(Γ : flat(e)) ⇓4 genc′(ym)(∆ : v) where f(xn) = e ∈ P . With this assumption
we have to show that Γ : f(xn) ⇓2 ∆ : v implies gen(Γ : f(xn)) ⇓4 genc′(ym)(∆ :
v). This claim holds because we have

gen(Γ : flat(e)) ⇓4 genc′(ym)(∆ : v)
= gen(Γ) : flat(gen(e)) ⇓4 genc′(ym)(∆ : v)

gen(Γ) : f(xn) ⇓4 genc′(ym)(∆ : v)
= gen(Γ : f(xn)) ⇓4 genc′(ym)(∆ : v)

because f(xn) = gen(e) ∈ gen(P) and gen(flat(e)) = flat(gen(e)) by Proposi-
tion 3.2.4.
(Let): The induction hypothesis in this case is that Γ [xk 7→ ek] : e ⇓2 ∆ : v
implies gen(Γ [xk 7→ ek] : e) ⇓4 genc′(ym)(∆ : v). With this assumption we have
to show that Γ : let {xk = ek} in e ⇓2 ∆ : v implies gen(Γ : let {xk = ek} in e) ⇓4

genc′(ym)(∆ : v). This claim holds because we have

gen(Γ [xk 7→ ek] : e) ⇓4 genc′(ym)(∆ : v)
= gen(Γ)

[
xk 7→ genxk

(ek)
]

: gen(e) ⇓4 genc′(ym)(∆ : v)

gen(Γ) : let {xk = genxk
(ek)} in gen(e) ⇓4 genc′(ym)(∆ : v)

= gen(Γ : let {xk = ek} in e) ⇓4 genc′(ym)(∆ : v)

where the bindings of xk can be drawn out of the scope of gen(), as the in-
configuration is well formed and Γ features correct variable updates by assump-
tion.
(Or): The induction hypothesis in this case is that Γ : ei ⇓2 ∆ : v implies
gen(Γ : ei) ⇓4 genc′(ym)(∆ : v) where i ∈ {1, 2}. With this assumption we have
to show that Γ : e1 ? e2 ⇓2 ∆ : v implies gen(Γ : e1 ? e2) ⇓4 genc′(ym)(∆ : v).
This claim holds because we have

gen(Γ : ei) ⇓4 genc′(ym)(∆ : v)
= gen(Γ) : gen(ei) ⇓4 genc′(ym)(∆ : v)

gen(Γ) : gen(e1) ? gen(e2) ⇓4 genc′(ym)(∆ : v)
= gen(Γ : e1 ? e2) ⇓4 genc′(ym)(∆ : v)

(Select): The induction hypothesis in this case is that Γ : e ⇓2 ∆ : c(xn)
implies gen(Γ : e) ⇓4 genc′(ym)(∆ : c(xn)) and ∆ : σ(ei) ⇓2 Θ : v implies
gen(∆ : σ(ei)) ⇓4 genc′(ym)(Θ : v) where i ∈ {1, . . . , k} and c(xn) = σ(pi). With
this assumption we have to show that Γ : case e of {pk 7→ ek} ⇓2 Θ : v implies
gen(Γ : case e of {pk 7→ ek}) ⇓4 genc′(ym)(Θ : v). This claim holds because we

3.2. ELIMINATION OF FREE VARIABLES 59

have

gen(Γ : case e of {pk 7→ ek})
= gen(Γ) : case gen(e) of {pk 7→ gen(ek)} gen(Γ : e) = gen(Γ) : gen(e)
. . .

genc′(ym)(∆ : c(xn)) = gen(∆) : c(xn) | ()
gen(∆ : σ(ei))

= ud()(gen(∆)) : σ(gen(ei))
. . .

genc′(ym)(Θ : v)
genc′(ym)(Θ : v)

because gen(σ(ei)) = σ(gen(ei)) as σ is a renaming of fresh variables.
(Guess): The induction hypothesis in this case is that Γ : e ⇓2 ∆ : x im-
plies gen(Γ : e) ⇓4 genc′(ym)(∆ : x) and ∆ [xn 7→ xn] [x 7→ c(xn)] : ei ⇓2 Θ :
v implies gen(∆ [xn 7→ xn] [x 7→ c(xn)] : ei) ⇓4 genc′(ym)(Θ : v) where pi =
c(xn) and i ∈ {1, . . . , k}. With this assumption we have to show that Γ :
case e of {pk 7→ ek} ⇓2 Θ : v implies gen(Γ : case e of {pk 7→ ek}) ⇓4 genc′(ym)(Θ :
v). This claim holds because we have

gen(Γ : case e of {pk 7→ ek})
= gen(Γ) : case gen(e) of {pk 7→ gen(ek)} gen(Γ : e) = gen(Γ) : gen(e)
. . .

genc′(ym)(∆ : x) = gen(∆ [ym 7→ ym] [x 7→ c′(ym)])
[
x

x−→ c′(ym)
]

: c′(ym) | x
gen(∆ [ym 7→ ym] [x 7→ c′(ym)] : ei)

= udx(gen(∆ [ym 7→ ym] [x 7→ c′(ym)])
[
x

x−→ c′(ym)
]
) : gen(ei)

. . .

genc′(ym)(Θ : v)
genc′(ym)(Θ : v)

as by Proposition 3.1.5 we have (x, ∗, x) ∈ ∆. �

3.2.3 Reintroduction of Free Variables

In this section we show how to construct derivations employing free variables
from those using generators. A first observation is that the rules of Figure 3.3
preserve a certain invariant concerning the adornments added during evaluation.
This invariant will later prove crucial for our purpose.

Definition 3.2.7 A heap Γ is called unadorned iff there exists no variable x
such that (x, x, e) ∈ Γ (for any e).

A heap Γ is called adorned with variable x iff there exists a value c(xn) such
that {(x, x, c(xn)), (xn, generate)} ⊆ Γ and Γ \ {(x, x, c(xn))} is unadorned.

Proposition 3.2.8 Let Γ be an unadorned heap and D be a derivation of the
form Γ : e ⇓4 C. Then any heap of an in-configuration of D is unadorned and
for any out-configuration ∆ : v | (x) holds that

a) ∆ is unadorned if (x) = () and

60 CHAPTER 3. ELIMINATION OF FREE VARIABLES

b) ∆ is adorned with x if (x) = x.

Proof. By induction on the structure of D.
Base Case:
(Val): the claim holds trivially.
Inductive Cases:
(Var): If Γ [x 7→ e] is unadorned then so is Γ, obviously. Therefore, the claim
holds for ∆ : v | (y) by induction hypothesis. We distinguish the following cases,

1. If e = generate we know by Proposition 3.2.5 that

∆ : v | (y) = Γ [xn 7→ generate] : c(xn) | ()

Therefore ∆ is unadorned by induction hypothesis. As ad(x, e, (y)) = x

in this case we have that ∆
[
x

ad(x,e,(y))−−−−−−−→ v

]
is indeed adorned with x, the

adornment of the result configuration, as required.

2. If e 6= generate then, as x 6∈ dom(∆) (cf. Observation 2.2.4), we have

ad(x, e, (y)) = (y) 6= x and the claim holds for ∆
[
x

ad(x,e,(y))−−−−−−−→ v

]
: v |

ad(x, e, (y)) because it holds for ∆ : v | (y).

(Fun), (Or): The claim holds trivially for these rules since neither any heap nor
the adornment is changed.
(Let): If Γ is unadorned then so is Γ [xk 7→ ek], obviously. Therefore the claim
for ∆ : v | (x) directly stems from the induction hypothesis.
(Select): By induction hypothesis the claim holds for ∆ : c(xn) | (x). For
ud(x)(∆) we distinguish the following cases.

1. If (x) = () then ud(x)(∆) = ∆ and therefore ud(x)(∆) is unadorned by
induction hypothesis.

2. If (x) = x then we have by induction hypothesis (x, x, e′) ∈ ∆ for some
e′ and ud(x)(∆) = (∆ \ {(x, x, e′)}) ∪ {(x, e′)}. Therefore, ud(x)(∆) is
unadorned by Definition 3.2.7.

As ud(x)(∆) is unadorned in both cases the claim for Θ : v | (y) follows by
induction hypothesis. �

We can now turn to define the transformation which introduces free variables
instead of generator functions. This definition corresponds closely to the one of
Definition 3.2.3.

Definition 3.2.9 (Free Variable (Re-)Introduction free(·)) We introduce
free variables in configurations, heaps, expressions, and programs by replacing
calls to the special function generate. Note that the form of the first equation is

3.2. ELIMINATION OF FREE VARIABLES 61

justified by Proposition 3.2.8 plus Definition 3.2.7.

free(∆
[
xn 7→ generate, x

x−→ c(xn)
]

: e | x) = free(∆
[
x

x−→ c(xn)
]
) : x

free(∆ : e | ()) = free(∆) : free(e)
free(Γ : e) = free(Γ) : free(e)

free(Γ) = {(x, freex(e)) | (x, (), e) ∈ Γ}
∪ {(x, y) | ∃e : (x, y, e) ∈ Γ}

freex(generate) = x
freex(e) = free(e), if e 6= generate

free(x) = x

free(s(en)) = s(free(en))
free(e1 ? e2) = free(e1) ? free(e2)

free((f)case e of {pk → ek}) = case free(e) of {pk → free(ek)}
free(let {xk = ek} in e) = let {xk = freexk

(ek)} in free(e)

free(P) = ln = free(rn) where P = ln = rn

Next we show a simple proposition which parallels Proposition 3.2.4.

Proposition 3.2.10

1. flat(free(e)) = free(flat(e))

2. free(gen(e)) = e

Proof. The proof for 1 is fully analogue to the proof of Proposition 3.2.4 and
the proof of 2 is by a simple induction. �

We are now ready to prove our result about how to construct derivations
with free variables from those featuring generators. The restriction that e might
not be a direct call to a generator is merely technical and not severe. One can
simply evaluate, e.g., let {x = generate} in x instead.

Lemma 3.2.11 Let P be a program without free variables possibly employing
generators, Γ an unadorned heap and e an expression such that e 6= generate.
Then we have

Γ : e ⇓4 ∆ : v | (x)
implies free(Γ : e) ⇓1 free(∆ : v | (x))

Proof. (Of Lemma 3.2.11) By induction on the structure of the proof tree.
Base cases:
(Val): We have

Γ : c(xn) ⇓4 Γ : c(xn) | ()
implies free(Γ : c(xn)) ⇓1 free(Γ : c(xn) | ())

as the latter is equal to free(Γ) : c(xn) ⇓4 free(Γ) : c(xn)
Inductive cases:
(Var): The induction hypothesis in this case is that

Γ : e ⇓4 ∆ : v | (y)
implies free(Γ : e) ⇓1 free(∆ : v | (y))

62 CHAPTER 3. ELIMINATION OF FREE VARIABLES

. With this assumption we have to show that

Γ [x 7→ e] : x ⇓4 ∆
[
x

ad(x,e,(y))−−−−−−−→ v

]
: v | ad(x, e, (y))

implies free(Γ [x 7→ e] : x) ⇓1 free(∆
[
x

ad(x,e,(y))−−−−−−−→ v

]
: v | ad(x, e, (y)))

. This claim holds because we have

free(Γ : e) ⇓1 free(∆ : v | (y))
= free(Γ) : free(e) ⇓1 free(∆) : v

free(Γ) [x 7→ freex(e)] : x ⇓1 free(∆) [x 7→ v] : v

= free(Γ [x 7→ e] : x) ⇓1 free(∆
[
x

ad(x,e,(y))−−−−−−−→ v

]
: v | ad(x, e, (y)))

whenever e 6= generate and (y) = () because freex(e) = free(e) and ad(x, e, (y)) =
() in this case.
For e 6= generate but (y) = y we first note that by Proposition 3.2.8 the heap
∆ must be of the form ∆′

[
y

y−→ c(xn)
]

[xn 7→ generate] and therefore we have

free(∆ : v | y) = free(∆′
[
y

y−→ c(xn)
]
) : y and we can construct

free(Γ : e) ⇓4 free(∆ : v | y)
= free(Γ) : free(e) ⇓4 free(∆′

[
y

y−→ c(xn)
]
) : y

free(Γ) [x 7→ freex(e)] : x ⇓4 free(∆′
[
y

y−→ c(xn)
]
) [x 7→ y] : y

= free(Γ [x 7→ e] : x) ⇓4 free(∆
[
x

y−→ v
]

: v | y)

Finally, if e = generate Proposition 3.2.2 states that we have

Γ [x 7→ generate] : x ⇓4 Γ [xn 7→ generate]
[
x

x−→ c(xn)
]

: c(xn) | x

and therefore we can construct

free(Γ [x 7→ generate] : x) ⇓1 free(Γ [xn 7→ generate]
[
x

x−→ c(xn)
]

: c(xn) | x)

= free(Γ) [x 7→ freex(generate)] : x ⇓1 free(Γ
[
x

x−→ c(xn)
]
) : x

= free(Γ) [x 7→ x] : x ⇓1 free(Γ) [x 7→ x] : x

which is an axiomatic application of rule (Val).
(Fun): The induction hypothesis in this case is that

Γ : flat(e) ⇓4 ∆ : v | (x)
implies free(Γ : flat(e)) ⇓1 free(∆ : v | (x))

where f(xn) = e ∈ P . With this assumption we have to show that

Γ : f(xn) ⇓4 ∆ : v | (x)
implies free(Γ : f(xn)) ⇓1 free(∆ : v | (x))

. This claim holds because we have

free(Γ : flat(e)) ⇓1 free(∆ : v | (x))
= free(Γ) : flat(free(e)) ⇓1 free(∆ : v | (x))

free(Γ) : f(xn) ⇓1 free(∆ : v | (x))
= free(Γ : f(xn)) ⇓1 free(∆ : v | (x))

3.2. ELIMINATION OF FREE VARIABLES 63

as by Proposition 3.2.10.1 we have flat(free(e)) = free(flat(e)) and, by definition
of free(P), we have f(xn) = free(e) ∈ free(P).
(Let): The induction hypothesis in this case is that

Γ [xk 7→ ek] : e ⇓4 ∆ : v | (x)
implies free(Γ [xk 7→ ek] : e) ⇓1 free(∆ : v | (x))

. With this assumption we have to show that

Γ : let {xk = ek} in e ⇓4 ∆ : v | (x)
implies free(Γ : let {xk = ek} in e) ⇓1 free(∆ : v | (x))

. This claim holds because we have

free(Γ [xk 7→ ek] : e) ⇓1 free(∆ : v | (x))
= free(Γ)

[
xk 7→ freexk

(ek)
]

: free(e) ⇓1 free(∆ : v | (x))

free(Γ) : let {xk = freexk
(ek)} in free(e) ⇓1 free(∆ : v | (x))

= free(Γ : let {xk = ek} in e) ⇓1 free(∆ : v | (x))

(Or): The induction hypothesis in this case is that

Γ : ei ⇓4 ∆ : v | (x)
implies free(Γ : ei) ⇓1 free(∆ : v | (x))

where i ∈ {1, 2}. With this assumption we have to show that

Γ : e1 ? e2 ⇓4 ∆ : v | (x)
implies free(Γ : e1 ? e2) ⇓1 free(∆ : v | (x))

. This claim holds because we have

free(Γ : ei) ⇓1 free(∆ : v | (x))
= free(Γ) : free(ei) ⇓1 free(∆ : v | (x))

free(Γ) : free(e1) ? free(e2) ⇓1 free(∆ : v | (x))
= free(Γ : e1 ? e2) ⇓1 free(∆ : v | (x))

(Select): The induction hypothesis in this case is that

Γ : e ⇓4 ∆ : c(xn) | (x)
implies free(Γ : e) ⇓1 free(∆ : c(xn) | (x))

and
ud(x)(∆) : σ(ei) ⇓4 Θ : v | (y)

implies free(ud(x)(∆) : σ(ei)) ⇓1 free(Θ : v | (y))

where i ∈ {1, . . . , k} and c(xn) = σ(pi). With this assumption we have to show
that

Γ : case e of {pk 7→ ek} ⇓4 Θ : v | (y)
implies free(Γ : case e of {pk 7→ ek}) ⇓1 free(Θ : v | (y))

64 CHAPTER 3. ELIMINATION OF FREE VARIABLES

. This claim holds because we have

free(Γ : case e of {pk 7→ ek})
= free(Γ) : case free(e) of {pk 7→ free(ek)} free(Γ : e) = free(Γ) : free(e)
. . .
free(∆ : c(xn) | (x)) = free(∆) : c(xn) free(ud(x)(∆) : σ(ei)) = free(ud(x)(∆)) : σ(free(ei))
. . .
free(Θ : v | (y))

free(Θ : v | (y))

in the case that (x) = () and, therefore, ud(x)(∆) = ∆ and σ(free(e)) =
free(σ(e)) as σ is a variable renaming.
And in the case that (x) = x it holds that by Proposition 3.2.8 the heap ∆ must
be of the form ∆′

[
x

x−→ c(xn)
]

[xn 7→ generate] and therefore we have:

free(∆ : c(xn) | x) = free(∆′
[
x

x−→ c(xn)
]
) : x = free(∆′) [x 7→ x] : x

Furthermore we have in this case

free(udx(∆)) = free(udx(∆′
[
x

x−→ c(xn)
]

[xn 7→ generate]))

= free(udx(∆′
[
x

x−→ c(xn)
]
) [xn 7→ generate])

= free(udx(∆′
[
x

x−→ c(xn)
]
)) [xn 7→ xn]

= free(∆′) [x 7→ c(xn), xn 7→ xn]

and all in all we can construct the following application of rule (Guess).

free(Γ : case e of {pk 7→ ek})
= free(Γ) : case free(e) of {pk 7→ free(ek)} free(Γ : e) = free(Γ) : free(e)
. . .
free(∆ : c(xn) | (x)) = free(∆′) [x 7→ x] : x free(ud(x)(∆) : σ(ei)) = free(∆′) [x 7→ c(xn), xn 7→ xn] : σ(free(ei))
. . .
free(Θ : v | (y))

free(Θ : v | (y))

�

3.3 Summary

In the previous sections we have constructed closely corresponding derivations
for programs and expressions with free variables to the corresponding ones em-
ploying generators. The aim of this section is to summarize these results in
the terms of the more abstract notion of semantics introduced in Section 2.2.5.
For this we will first extract the values of derivations with generators. Then
we show that neither of the mappings gen(·) nor free(·) have an influence of the
value extraction from result configurations. Finally, we will show that the set
of computable values is indeed the same for both kinds of derivations.

3.3. SUMMARY 65

Definition 3.3.1 (Extracting Values from Generator Derivations)
Let P be a program without free variables possibly employing generators and e
an expression such that e 6= generate. Then

ddeeeP4 := {c(Γ∗(xn)) | ∅ : flat(e) ⇓i Γ : c(xn) | ()}
∪ {x | ∅ : flat(e) ⇓i Γ : c(xn) | x}

where Γ∗(·) was introduced in Definition 2.2.5.

The difference between [[e]]P4 and ddeeeP4 is in the treatment of generators
evaluated at top level. For the semantics of e = let {x = generate} in x holds:

[[e]]P4 = |{c(y) | c ∈ CΣ}|
ddeeeP4 = |{x}|

An important point about the reconstruction of heaps when mapping be-
tween derivations with or without free variables is that the final values with
regard to [[e]]P1 ,[[e]]P4 , or ddeeeP4 are not changed. This is the content of the next
proposition.

Proposition 3.3.2 (Value Extraction with free(·), gen())

1. Let Γ be a heap with access tokens (Definition 3.1.2) where T = {∗} and
E′ = Var which features correct variable updates. Then we have for all x
that Γ∗(x) = gen(Γ)∗(x).

2. Let Γ be a heap with access tokens where T = Var and E′ flat construc-
tor terms which is unadorned. Then we have for all x that Γ∗(x) =
free(Γ)∗(x).

Proof. The size of an expression e, denoted by |e|, is inductively defined by:

|x| = 1
|s(en)| = 1 +

∑n
1 |en|

|case e of {pk → ek}| = 1 + |e|+
∑k

1 |ek|
|let {xk = ek} in e| = 1 + |e|+

∑k
1 |ek|

|e1 ? e2| = 1 + |e1|+ |e2|

The size |Γ| of a give heap Γ = {(xn, en)} is defined by |Γ| =
∑n

1 |en|. (Note
that heaps are by definition finite sets.)

1. Proof by Noetherian induction on the size of Γ.
Base case, |Γ| = 0 which implies Γ = ∅: we have for any variable x that
Γ∗(x) = gen(Γ)∗(x) = x.
Inductive case: Let the claim hold for all heaps with a smaller size than Γ. Then
we have by the according Definitions 2.2.5 and 3.2.3:
If x 6∈ dom(Γ) then Γ∗(x) = gen(Γ)∗(x) = x.
If Γ = Γ′

[
x
∗−→ y

]
then x 6= y by assumption that Γ features correct updates.

Therefore, we have Γ∗(x) = Γ′∗(y) and gen(Γ)∗(x) = gen(Γ′)∗(y) and the claim
follows by induction hypothesis.
If Γ = Γ′ [x 7→ x] then Γ∗(x) = x and gen(Γ)∗(x) = gen(Γ′) [x 7→ generate]∗(x) =
x.

66 CHAPTER 3. ELIMINATION OF FREE VARIABLES

If Γ = Γ′ [x 7→ y] where x 6= y then Γ∗(x) = Γ′∗(y) and gen(Γ)∗(x) = gen(Γ′)∗(y)
and the claim follows by induction hypothesis.
If Γ = Γ′ [x 7→ c(xn)] then Γ∗(x) = c(Γ′∗(xn)) and gen(Γ)∗(x) = c(gen(Γ′)∗(xn))
and the claim follows by induction hypothesis.
If Γ = Γ′ [x 7→ e] where e is a function call, a ?-expression or a case expression
then Γ∗(x) = x and gen(Γ)∗(x) = gen(Γ′) [x 7→ genx(e)]∗(x) = x as genx(e) is
also a function call, ?-expression or case expression, respectively.
If Γ = Γ′ [x 7→ let {xk = ek} in e] then Γ∗(x) = Γ′ [xk 7→ ek, x 7→ e]∗(x) and
gen(Γ)∗(x) = gen(Γ′ [xk 7→ ek, x 7→ e])∗(x) and the claim follows by induction
hypothesis.

2. Again proof by Noetherian induction on the size of Γ.
Base case, |Γ| = 0: we have for any variable x that Γ∗(x) = free(Γ)∗(x) = x.
Inductive case: Let the claim hold for all heaps with a smaller size than Γ. It
cannot be the case that Γ = Γ′

[
x

y−→ e
]

since Γ is by assumption unadorned.
Therefore, the following case distinction in accordance with Definitions 2.2.5
and 3.2.9 is complete:
If x 6∈ dom(Γ) then Γ∗(x) = free(Γ)∗(x) = x.
If Γ = Γ′ [x 7→ x] then Γ∗(x) = x and free(Γ)∗(x) = free(Γ′) [x 7→ x]∗(x) = x.
If Γ = Γ′ [x 7→ y] where x 6= y then Γ∗(x) = Γ′∗(y) and free(Γ)∗(x) = free(Γ′)∗(y)
and the claim follows by induction hypothesis.
If Γ = Γ′ [x 7→ c(xn)] then Γ∗(x) = c(Γ′∗(xn)) and free(Γ)∗(x) = c(free(Γ′)∗(xn))
and the claim follows by induction hypothesis.
If Γ = Γ′ [x 7→ e] where e is a function call, a ?−expressions or a case expression
then Γ∗(x) = x and free(Γ)∗(x) = free(Γ′) [x 7→ freex(e)]∗(x) = x as freex(e) is
either also a function call, ?-expression or case expression, respectively, or equal
to x if e = generate.
If Γ = Γ′ [x 7→ let {xk = ek} in e] then Γ∗(x) = Γ′ [xk 7→ ek, x 7→ e]∗(x) and
free(Γ)∗(x) = free(Γ′ [xk 7→ ek, x 7→ e])∗(x) and the claim follows by induction
hypothesis. �

We are now ready to the result of this chapter, namely that the set of values
computable with regard to a program P is equal to that computable for the
version with generators gen(P).

Theorem 1 (Elimination of Free Variables) Let P be a program over sig-
nature Σ and e be a Σ-expression. Then we have

[[e]]P0 = ddgen(e)eegen(P)
4

Proof. By Lemma 3.2.6 we have that ∅ : flat(e) ⇓2 Γ : c(xn) in P implies

gen(∅ : flat(e)) ⇓4 genc′(ym)(Γ : c(xn))
= ∅ : gen(flat(e)) ⇓4 gen(Γ) : c(xn) | () Def 3.2.3
= ∅ : flat(gen(e)) ⇓4 gen(Γ) : c(xn) | () Prop 3.2.4

in gen(P) since ∅ features correct variable updates. And by Proposition 3.3.2
we have c(Γ∗(xn)) = c(gen(Γ)∗(xn)). Thus, we may conclude

{c(Γ∗(xn)) | ∅ : flat(e) ⇓1 Γ : c(xn) in P}
⊆ {c(Γ′∗(xn)) | ∅ : flat(gen(e)) ⇓1 Γ′ : c(xn) | () in gen(P)}

(1)

3.3. SUMMARY 67

Likewise by Lemma 3.2.6 we have that ∅ : flat(e) ⇓2 Γ : x in P implies

gen(∅ : flat(e)) ⇓4 genc′(ym)(Γ : x)
= ∅ : gen(flat(e)) ⇓4 genc′(ym)(Γ [xn 7→ xn]) : c′(ym) | x Def 3.2.3
= ∅ : flat(gen(e)) ⇓4 genc′(ym)(Γ [xn 7→ xn]) : c′(ym) | x Prop 3.2.4

in gen(P) and we may conclude also

{x | ∅ : flat(e) ⇓1 Γ : x in P}
⊆ {x | ∅ : flat(gen(e)) ⇓1 Γ′ : c(xn) | x in gen(P)} (2)

Lemma 3.2.11 entails that ∅ : flat(gen(e)) ⇓4 Γ : c(xn) | () in gen(P) implies

free(∅ : flat(gen(e))) ⇓1 free(Γ : c(xn) | ())
= ∅ : free(flat(gen(e))) ⇓1 free(Γ) : c(xn) Def 3.2.9
= ∅ : flat(free(gen(e))) ⇓1 free(Γ) : c(xn) Prop 3.2.10.1
= ∅ : flat(e) ⇓1 free(Γ) : c(xn) Prop 3.2.10.2

in free(gen(P)) = P (Proposition 3.2.10.2) since ∅ is unadorned and for all Σ-
expressions e holds that gen(e) 6= generate. And by Proposition 3.3.2 we have
c(Γ∗(xn)) = c(free(Γ)∗(xn)). Thus, we may conclude

{c(Γ∗(xn)) | ∅ : flat(gen(e)) ⇓4 Γ : c(xn) | () in gen(P)}
⊆ {c(Γ′∗(xn)) | ∅ : flat(e) ⇓1 Γ′ : c(xn) in P}

(3)

Lemma 3.2.11 also entails that ∅ : flat(gen(e)) ⇓4 Γ : c(xn) | x in gen(P) implies

free(∅ : flat(gen(e))) ⇓1 free(Γ : c(xn) | x)
= ∅ : free(flat(gen(e))) ⇓1 free(Γ) : x Def 3.2.9
= ∅ : flat(free(gen(e))) ⇓1 free(Γ) : x Prop 3.2.10.1
= ∅ : flat(e) ⇓1 free(Γ) : x Prop 3.2.10.2

in P and we conclude

{x | ∅ : flat(gen(e)) ⇓4 Γ : c(xn) | x in gen(P)}
⊆ {x | ∅ : flat(e) ⇓1 Γ′ : x in P} (4)

Finally we can put all observations (1)− (4) together to get the validity of the
following equations.

[[e]]P0
= [[e]]P1 Cor 2.3.2
= {c(Γ∗(xn)) | ∅ : flat(e) ⇓1 Γ : c(xn)}∪
{x | ∅ : flat(e) ⇓1 Γ : x} Def 2.2.5

= {c(Γ∗(xn)) | ∅ : flat(e) ⇓2 Γ1 : c(xn)}∪
{x | ∅ : flat(e) ⇓2 Γ1 : x}

the step from ⇓1 to ⇓2 is a conservative extension, Γ1
∗(·) ignores tokens

⊆ {c(Γ2
∗(xn)) | ∅ : flat(gen(e)) ⇓4 Γ2 : c(xn)}∪

{x | ∅ : flat(gen(e)) ⇓4 Γ2 : x} in gen(P) (1), (2)
= ddeeegen(P)

4 Def 3.3.1
⊆ {c(Γ3

∗(xn)) | ∅ : flat(e) ⇓1 Γ3 : c(xn)}∪
{x | ∅ : flat(e) ⇓1 Γ3 : x} in P (3), (4)

= [[e]]P1 Def 2.2.5
= [[e]]P0 Cor 2.3.2

68 CHAPTER 3. ELIMINATION OF FREE VARIABLES

�

Note that we also have ddeeeP4 = [[free(e)]]free(P)
0 for a program with generators

P and an according expression e 6= generate as a simple implication of Theorem 1
and Proposition 3.2.10.2.

Theorem 1 is stated in terms of the semantics ⇓4 (cf. Figure 3.3). Nev-
ertheless, in the following we will work with the semantics ⇓3 as introduced
in Figure 3.2. This means especially, that we loose the information about gen-
erators evaluated at top level and will compute any constructor for, e.g., the
expression let {x = generate} in x. This additional non-determinism with re-
spect to the calculation with free variables can be seen as the major drawback
for any approach employing generators solely. Especially, it is not obvious how
to extend such a setting by standard logic features like unification. We will
come back to this problem in Sections 6.7 and 6.8 and present a new solution.

Chapter 4

Uniform Programs

In this chapter we will transform the derivation rules considered so far in such
a way that expressions can be restricted to a simpler syntactic structure. In the
course of this chapter we will eliminate case-expressions and we will also omit
let-expressions during evaluation, although they can still be used in programs.
As a consequence, in the end we will be left with a calculus featuring only four
rules. There are several advantages of the proposed transformations.

• programs and derivations become more readable

• formal considerations become less technical, cf. Section 4.3

• the resulting calculus is more concise and also closer to implementations

• a short excursus will show that the resulting calculus is closer to term-
graph rewriting than the former

To obtain these advantages, we will first consider a standard transforma-
tion employed in many current compiling systems (Section 4.1). In Section 4.2
we will then introduce the new form of expressions and programs called uni-
form. After that (Section 4.3) we introduce the corresponding flat version of
uniform expressions which is used in the according calculus. Before we prove
the soundness of the proposed transformation (Section 4.5) a short excursus to
term-graph rewriting will further motivate the results (Section 4.4).

4.1 Case Lifting

Most if not all compilers for the functional logic language Curry employ a trans-
formation called case lifting. The idea is that a nested case expressions can be
lifted by introducing a new function whose definition consists of the inner case
expression (which is then no longer nested).

Example 4.1.1 (Case Lifting) Reconsider the definition of equal from Ex-
ample 1.1.15. The flat version looks like this:

equal x y = case x of O → case y of O → True

S x’ → case y of S y’ → True

Case lifting of the definition would produce:

69

70 CHAPTER 4. UNIFORM PROGRAMS

equal x y = case x of O → equal_1 y

S x’ → equal_2 y

equal_1 y = case y of O → True

equal_2 y = case y of S y’ → True

We need some helpful observations to prepare the proof of correctness of this
transformation. Lemma 4.1.2 and Lemma 4.1.3 are concerned with invariants
with respect to heaps in derivations. After that Proposition 4.1.4 claims that
case-expressions with non-variable arguments can be replaced by expressions of
the form (case x of {pk → ek}). We can then formalize the transformation in
Definitions 4.1.5-4.1.8 followed by the correctness proof (Lemma 4.1.10).

The first useful observation is that no variable can get lost during evaluation.

Lemma 4.1.2 Γ : e ⇓3 ∆ : v implies dom(Γ) ⊆ dom(∆).

The proof is a simple induction where the interesting cases are rules (Var)
and (Let) as only these rules introduce or update variables in the heap.

Proof. (Of Lemma 4.1.2) By induction on the structure of the proof tree.
Base cases:
(Val): We have Γ : c(xn) ⇓3 Γ : c(xn) implies dom(Γ) ⊆ dom(Γ).
Inductive cases:
(Var): The induction hypothesis in this case is that Γ : e ⇓3 ∆ : v implies
dom(Γ) ⊆ dom(∆). With this assumption we have to show that Γ [x 7→ e] :
x ⇓3 ∆ [x 7→ v] : v implies dom(Γ [x 7→ e]) ⊆ dom(∆ [x 7→ v]). This claim holds
because we have

dom(Γ [x 7→ e])
= dom(Γ) ∪ {x}
⊆ dom(∆) ∪ {x}
= dom(∆ [x 7→ v])

(Fun): The induction hypothesis in this case is that Γ : flat(e) ⇓3 ∆ : v implies
dom(Γ) ⊆ dom(∆) where f(xn) = e ∈ P . With this assumption we have to
show that Γ : f(xn) ⇓3 ∆ : v implies dom(Γ) ⊆ dom(∆) which is a direct
consequence of the induction hypothesis.
(Let): The induction hypothesis in this case is that Γ [xk 7→ ek] : e ⇓3 ∆ : v
implies dom(Γ [xk 7→ ek]) ⊆ dom(∆). With this assumption we have to show
that Γ : let {xk = ek} in e ⇓3 ∆ : v implies dom(Γ) ⊆ dom(∆). This claim holds
because we have

dom(Γ)
⊆ dom(Γ) ∪ {xk}
= dom(Γ [xk 7→ ek])
⊆ dom(∆)

(Or): The induction hypothesis in this case is that Γ : ei ⇓3 ∆ : v implies
dom(Γ) ⊆ dom(∆) where i ∈ {1, 2}. With this assumption we have to show
that Γ : e1 ? e2 ⇓3 ∆ : v implies dom(Γ) ⊆ dom(∆) which is a direct consequence
of the induction hypothesis.
(Select): The induction hypothesis in this case is that Γ : e ⇓3 ∆ : c(xn) implies
dom(Γ) ⊆ dom(∆) and ∆ : σ(ei) ⇓3 Θ : v implies dom(∆) ⊆ dom(Θ) where

4.1. CASE LIFTING 71

i ∈ {1, . . . , k} and c(xn) = σ(pi). With this assumption we have to show that
Γ : case e of {pk 7→ ek} ⇓3 Θ : v implies dom(Γ) ⊆ dom(Θ) which holds by
inductive assumption and by transitivity of ⊆. �

The second observation is that given a successful derivation we can add any
fresh bindings to the initial heap without effecting the result value. Moreover,
the added bindings will be found in the resulting heap without any change.

Lemma 4.1.3 Γ : e ⇓3 ∆ : v and dom(∆) ∩ dom(Γ′) = ∅ imply (Γ ∪ Γ′) : e ⇓3

(∆ ∪ Γ′) : v.

The proof is a simple induction where the only notable insight used in rules
(Var) and (Guess) is that for any two heaps Γ,Γ′ such that x 6∈ dom(Γ′) it holds
that Γ [x 7→ e] ∪ Γ′ is equal to (Γ ∪ Γ′) [x 7→ e].

Proof. (Of Lemma 4.1.3) By induction on the structure of the proof tree.
Base cases:
(Val): We have Γ : c(xn) ⇓3 Γ : c(xn) and dom(Γ) ∩ dom(Γ′) = ∅ imply
(Γ ∪ Γ′) : c(xn) ⇓3 (Γ ∪ Γ′) : c(xn).
Inductive cases:
(Var): The induction hypothesis in this case is that Γ : e ⇓3 ∆ : v and dom(∆)∩
dom(Γ′) = ∅ imply (Γ ∪ Γ′) : e ⇓3 (∆ ∪ Γ′) : v. With this assumption we have
to show that Γ [x 7→ e] : x ⇓3 ∆ [x 7→ v] : v and dom(∆ [x 7→ v]) ∩ dom(Γ′) = ∅
imply (Γ [x 7→ e] ∪ Γ′) : x ⇓3 (∆ [x 7→ v] ∪ Γ′) : v. This claim holds because we
have (Γ [x 7→ e]∪Γ′) = (Γ∪Γ′) [x 7→ e] and (∆ [x 7→ v]∪Γ′) = (∆∪Γ′) [x 7→ v].
(Fun): The induction hypothesis in this case is that Γ : flat(e) ⇓3 ∆ : v and
dom(∆) ∩ dom(Γ′) = ∅ imply (Γ ∪ Γ′) : flat(e) ⇓3 (∆ ∪ Γ′) : v where f(xn) =
e ∈ P . With this assumption we have to show that Γ : f(xn) ⇓3 ∆ : v and
dom(∆) ∩ dom(Γ′) = ∅ imply (Γ ∪ Γ′) : f(xn) ⇓3 (∆ ∪ Γ′) : v which is a direct
consequence of the induction hypothesis.
(Let): The induction hypothesis in this case is that Γ [xk 7→ ek] : e ⇓3 ∆ : v
and dom(∆) ∩ dom(Γ′) = ∅ imply (Γ [xk 7→ ek] ∪ Γ′) : e ⇓3 (∆ ∪ Γ′) : v. With
this assumption we have to show that Γ : let {xk = ek} in e ⇓3 ∆ : v and
dom(∆) ∩ dom(Γ′) = ∅ imply (Γ ∪ Γ′) : let {xk = ek} in e ⇓3 (∆ ∪ Γ′) : v. This
claim holds because we have (Γ [xk 7→ ek] ∪ Γ′) = (Γ ∪ Γ′) [xk 7→ ek] and since
{xk} ⊆ dom(∆) by Lemma 4.1.2.
(Or): The induction hypothesis in this case is that Γ : ei ⇓3 ∆ : v and dom(∆)∩
dom(Γ′) = ∅ imply (Γ ∪ Γ′) : ei ⇓3 (∆ ∪ Γ′) : v where i ∈ {1, 2}. With this
assumption we have to show that Γ : e1 ? e2 ⇓3 ∆ : v and dom(∆)∩dom(Γ′) = ∅
imply (Γ ∪ Γ′) : e1 ? e2 ⇓3 (∆ ∪ Γ′) : v which is a direct consequence of the
induction hypothesis.
(Select): The induction hypothesis in this case is that Γ : e ⇓3 ∆ : c(xn) and
dom(∆)∩dom(Γ′) = ∅ imply (Γ∪Γ′) : e ⇓3 (∆∪Γ′) : c(xn) and ∆ : σ(ei) ⇓3 Θ : v
and dom(Θ) ∩ dom(Γ′) = ∅ imply (∆ ∪ Γ′) : σ(ei) ⇓3 (Θ ∪ Γ′) : v where
i ∈ {1, . . . , k} and c(xn) = σ(pi). With this assumption we have to show
that Γ : case e of {pk 7→ ek} ⇓3 Θ : v and dom(Θ) ∩ dom(Γ′) = ∅ imply
(Γ∪Γ′) : case e of {pk 7→ ek} ⇓3 (Θ∪Γ′) : v which holds by inductive assumption
and by transitivity of ⊆ along with the fact that for any sets M,N,O the
assumptions M ⊆ N and N ∩O = ∅ imply M ∩O = ∅. �

72 CHAPTER 4. UNIFORM PROGRAMS

A very simple “transformation” allows us to eliminate non-variable expres-
sions at the matching position of a case.

Proposition 4.1.4 (Case with Variable Arguments)
Programs can be equivalently reformulated such that all case expressions are of
the form case x of {pk → ek} where x 6∈

⋃
vars(ek).

Proof. We can replace every expression of the form case e of {pk → ek} by an
expression let {x = e} in case x of {pk → ek}. This is because we can replace
every derivation of the form

Γ : e ⇓3 ∆ : c(xn) ∆ : σ(ei) ⇓3 Θ : v
Γ : case e of {pk 7→ ek} ⇓3 Θ : v

by a derivation

Γ : e ⇓ ∆ : c(xn)
Γ [x 7→ e] : x ⇓ ∆ [x 7→ c(xn)] : c(xn) ∆ [x 7→ c(xn)] : σ(ei) ⇓ Θ [x 7→ c(xn)] : v

Γ [x 7→ e] : case x of {pk → ek} ⇓ Θ [x 7→ c(xn)] : v
Γ : let {x = e} in case x of {pk → ek} ⇓ Θ [x 7→ c(xn)] : v

since by Lemma 4.1.3 ∆ : σ(ei) ⇓3 Θ : v implies for the fresh variable x 6∈
dom(Θ) that ∆ [x 7→ c(xn)] : σ(ei) ⇓ Θ [x 7→ c(xn)] : v. �

In the following we will assume that the considered programs feature only
case expressions with variable arguments. With this we can move towards lifting
case expressions. The following three definitions capture the according trans-
formation. The first definition labels case expressions such that they can be
identified during evaluation. To be most precise, we should change the deriva-
tion rules in order to work on labelled case expressions. We hope, however, that
it is obvious that such a change would just be a conservative extension of the
rules. Thus, we silently take for granted that labelling case expressions does not
change the semantics of programs and expressions.

Definition 4.1.5 (Labeling) Let Σ be a signature and L an infinite but enu-
merable set of symbols such that L ∩ Σ = ∅. Then we call L a set of labels
for Σ and the labeling cl(·) is defined on expressions, heaps, configurations,
statements, and programs by

cl(x) = x

cl(s(en)) = s(cl(en))
cl(case x of {pk → ek}) = casel x of {pk → cl(ek)} where l fresh
cl(let {xk = ek} in e) = let {xk = cl(ek)} in cl(e)
cl(e1 ? e2) = cl(e1) ? cl(e2)

cl(Γ) = {(x, cl(e)) | (x, e) ∈ Γ}

cl(Γ : e) = cl(Γ) : cl(e)

cl(l = e) = l = cl(e)

We denote the set of labels occurring in a labeled program P by l(P).

4.1. CASE LIFTING 73

The main challenge of case lifting is that the freshly introduced functions
need to capture the full scope of the case branches. The possible problem is
illustrated by the following example.

Example 4.1.6 Consider the definition of the function zipWith:

zipWith f [] _ = []

zipWith f _ [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

With case expressions the function is expressed like this:

zipWith f xs ys = case xs of

[] → []

(x:xs’) → case ys of

[] → []

(y:ys’) → f x y : zipWith f xs’ ys’

Lifting the nested case results in the following definition.

zipWith f xs ys = case xs of

[] → []

(x:xs’) → zipWith_1 f x xs’ ys

zipWith_1 f x xs’ z = case z of

[] → []

(y:ys’) → f x y : zipWith f xs’ ys’

Note that for the transformation all variables occurring free in the nested case
expression have to be collected. We do so in order of textual appearance. Note
also that while collecting we have to eliminate the double occurrence of the vari-
able f because a definition with a left-hand side zipWith_1 ys f x f xs’ would
be invalid by the definition of programs. The final thing to note is that the vari-
able at the argument position of the case (here ys) is added as the last argument
of the newly introduced function. The function’s definition introduces a fresh
variable at this position. This detail is due to the fact that the variable might
also appear in the case branches.

Definition 4.1.7 (Sequence of Unbound Variables)
Let e be an expression. The sequence of unbound variables occurring in e apart
from xn, denoted by uvxn

(e) is defined as follows.

uvxn
(x) =

{
ε , if x ∈ {xn}
x , otherwise

uvxn
(s(en)) = nub(uvxn

(e1), . . . , uvxn
(en))

uvxn
(casel x of {pk → ek}) = nub(uvxn

(x), uvVk
(ek))

where Vi = xn, uvε(pi)

uvxn (let {yk = ek} in e) = nub(uvxn ,yk
(ek), uvxn ,yk

(e))
uvxn (e1 ? e2) = nub(uvxn (e1), uvxn (e2))

where nub(·) removes all duplicates from a given sequence, keeping the first.

Using Definition 4.1.7 we can now formalize the transformation for case
lifting. We will define how to lift just a single case expression. When we have
shown that this single lifting results in an equivalent program a simple induction
shows that all nested cases can be eliminated in this way.

74 CHAPTER 4. UNIFORM PROGRAMS

Definition 4.1.8 (Lifting) Let Σ be a signature, L a set of labels for Σ and
l ∈ L. Then

lift l(x) = x

lift l(s(en)) = s(lift l(en))
lift l(casel x of {pk → ek}) = l(uvuvε(pk)(ek), x)
lift l(casel′ x of {pk → ek}) = casel′ x of {pk → lift l(ek)}, if l′ 6= l

lift l(let {yk = ek} in e) = let {yk = lift l(ek)} in lift l(e)
lift l(e1 ? e2) = lift l(e1) ? lift l(e2)

lift l(Γ) = {(x, lift l(e)) | (x, e) ∈ Γ}

lift l(Γ : e) = lift l(Γ) : lift l(e)

Let P = ln = rn be a labeled program and l ∈ l(P). Then the lifted program
lift l(P) is defined by ln = lift l(rn) together with the rule

l(uvuvε(pk)(ek), y) = case y of {pk → ek}

where y fresh whenever the expression casel x of {pk → ek} occurs in some rule
of P .

We have to make sure that programs transformed in this way are again
syntactically correct programs.

Proposition 4.1.9 Let Σ be a signature, L a set of labels for Σ and l ∈
L. Furthermore let P be a program over Σ containing the expression e =
casel x of {pk → ek} in some rule. Then lift l(P) is a program over signature
Σ ∪ {l}) such that l ∈ FΣ and l ∈ Σ(n+1) where xn = uvuvε(pk)(ek).

Proof. As e appears in a syntactically correct program, the expression itself is
well-formed, and, especially has unique variables. Therefore, we only have to
ensure that

a) the left-hand side of the new function l(xn, x) is linear and

b) all x ∈ vars(e) are either introduced in e or in xn, x but not both.

a) holds by definition of uvxn
(·) which is defined by nub(·) whenever variables

may occur multiple times and x is fresh.
b) can be shown by a simple induction on the structure of the ek noting that
all variables introduced in one of the ek, say ei, is excluded from uvuvε(pi)(ei)
while all variables introduced in ei will appear in uvuvε(pi)(ei). �

When interpreting programs as equations it should be intuitively clear that
the transformation of lifting cases is correct. Accordingly, the proof of correct-
ness is quite simple.

Lemma 4.1.10 Γ : e ⇓3 ∆ : v iff liftl(Γ : e) ⇓3 liftl(∆ : v) in lift l(P).

Proof.
(⇒): Consider an expression of the form

flat(case x of {pk → ek}) = case x of {pk → flat(ek)}

4.1. CASE LIFTING 75

that appears in a derivation Γ : e ⇓3 ∆ : v (remember that all expressions
are flattened before evaluation). Then we can replace all applications of rule
(Select) of the form

D1 D2

Γ : casel x of {pk → flat(ek)} ⇓3 Θ : v

by the following combination of applications.

D1 D2

Γ : case x of {pk → flat(ek)} ⇓3 Θ : v
= Γ : flat(case x of {pk → ek}) ⇓3 Θ : v

Γ : l(uvuvε(pk)(ek), x) ⇓3 Θ : v

The application of rule (Fun) is valid because by definition the rule

l(uvuvε(pk)(ek), x) = case x of {pk → ek}

is a variant of a rule in lift l(P).
(⇐): In the other direction we can simply drop the application of rule (Fun)
whenever a call to l is unfolded to construct a valid tree directly corresponding
to the one above. �

The final result of this section is a simple Corollary of Lemma 4.1.10.

Corollary 4.1.11 For every program P there is an equivalent program such
that each rule is of the form f(xn, x) = case x of {pk → ek} such that no ei in
{ek} contains a case expression.

Proof. First, by Proposition 4.1.4, there exists an equivalent program P ′ such
that all case expressions in P ′ have variable arguments.

Now we make sure that Σ does contain a symbol c ∈ CΣ ∩Σ(0) (or otherwise
introduce a new one to get a new signature). Then we consider if there is a
symbol f ∈ FΣ ∩Σ(n) such that f is defined in P ′ by the rule f(xn) = r where
r is not a case-expression. If such an f exists we can construct a new signature
Σ’ by replacing f by an n+ 1-ary symbol f and a new program P ′′ by replacing
the rule defining f by

f(xn, x) = case x of {c→ r}

and replacing all calls f(en) in the program by f(en, c). The resulting program
is equivalent which can be seen by contrasting the derivations

D

Γ : flat(r) ⇓3 ∆ : v
Γ : f(xn) ⇓3 ∆ : v

for program P ′ with the derivation

. . .

Γ : x ⇓3 Γ : c
D

Γ : flat(r) ⇓3 ∆ : v
Γ : case x of {c→ flat(r)} ⇓3 ∆ : v

= Γ : flat(case x of {c→ r}) ⇓3 ∆ : v
Γ : f(xn, x) ⇓3 ∆ : v

76 CHAPTER 4. UNIFORM PROGRAMS

e ::= x (variable x ∈ Var)
| c(en) (constructor call c ∈ CΣ ∩ Σ(n))
| f(en) (function call c ∈ FΣ ∩ Σ(n))
| e1 ? e2 (disjunction)
| let xn = en in e (let binding xn ∈ Var, n > 0)

P ::= D (program each D defines a different combination of symbols f, c)

D ::= f(xn, c(ym)) = e (declaration, f ∈ FΣ ∩ Σ(n+1)

the xn, ym are pairwise different,
(vars(e) \ uvε(e)) ∩ vars(f(x, c(ym))) = ∅,
uvε(e) ⊆ {xn, ym}

Figure 4.1: Uniform expressions and programs

in program P ′′.
Finally a simple induction on the number of nested case expressions in P ′′

shows the existence of a program P ′′′ of the required form. �

With this result we can replace case-based programs with a more readable
version which is closer to original programs.

4.2 Introduction of Uniform Programs

We are now ready to introduce the notion of uniform programs and expressions
as shown in Figure 4.1.

Example 4.2.1 Reconsider the function insert from example 1.1.12. It can be
redefined with a uniform declaration as:

insert(x,xs,()) = Cons(x,xs) ? insert2(x,xs)

insert2(x,Cons(y,ys)) = Cons(y,insert(x,ys,()))

In the following we will simply omit a dummy argument () for the sake of
readability and write:

insert(x,xs) = Cons(x,xs) ? insert2(x,xs)

insert2(x,Cons(y,ys)) = Cons(y,insert(x,ys))

Complex pattern matching also requires the introduction of fresh operations.
For example, sorted from Example 1.1.18 can be redefined as:

sorted(Nil) = True

sorted(Cons(m,xs)) = sorted2 m xs

sorted2(m,Nil) = True

sorted2(m,Cons(n,ns)) = and(leq(m,n),sorted2(n,ns))

To achieve matching on the last argument, sometimes we need to swap argu-
ments. For example, append (Example 1.1.4) is redefined as:

4.2. INTRODUCTION OF UNIFORM PROGRAMS 77

(Val) Γ : c(xn) ⇓5 Γ : c(xn)

(Var)
Γ : e ⇓5 ∆ : v

Γ [x 7→ e] : x ⇓5 ∆ [x 7→ v] : v

(Let)
Γ [xk 7→ ek] : e ⇓5 ∆ : v

Γ : let {xk = ek} in e ⇓5 ∆ : v

(Or)
Γ : ei ⇓5 ∆ : v

Γ : e1 ? e2 ⇓5 ∆ : v
where i ∈ {1, 2}

(Match)
Γ : x ⇓5 ∆ : c(ym) ∆ : flat(e) ⇓5 Θ : v

Γ : f(xn, x) ⇓5 Θ : v
where f(xn, c(ym)) = e ∈ P

Figure 4.2: Natural Semantics for Uniform Programs

app(xs,ys) = app2(ys,xs)

app2(ys,Nil) = ys

app2(ys,Cons(x,xs)) = Cons(x,app2(ys,xs))

From now on, it will be convenient to treat a program P as a mapping p
from function symbols to a sequence of rules. For example we will write p(app)
to denote the sequence of length 1 app(xs,ys)=app2(ys,xs) in the context of
the program from Example 4.2.1 above.

The rules to evaluate uniform expressions in the scope of uniform programs
are given in Figure 4.2. With the result of Section 4.1 it is easy to see that for
each program in the original sense there is an equivalent uniform program.

Proposition 4.2.2 For each program in the sense of Section 2.1 there is an
equivalent uniform program.

Proof. By Corollary 4.1.11 we can construct an equivalent program P where
each rule is of the form f(xn, x) = case x of {pk → ek}. For this program we
construct a uniform program P ′ by defining

f(xn, p1) = e1

...
f(xn, pk) = ek

For these programs compare the evaluations

D1

Γ : x ⇓3 ∆ : pi

D2

∆ : flat(ei) ⇓3 Θ : v
Γ : case x of {pk → flat(ek)} ⇓3 Θ : v

= Γ : flat(case x of {pk → ek}) ⇓3 Θ : v
Γ : f(xn, x) ⇓3 Θ : v

78 CHAPTER 4. UNIFORM PROGRAMS

e ::= x (variable x ∈ Var)
| s(xn) (s ∈ Σ(n))
| x ? y (disjunction)

Figure 4.3: Flat uniform expressions

and

D1

Γ : x ⇓5 ∆ : pi

D2

∆ : flat(ei) ⇓5 Θ : v
Γ : f(xn, x) ⇓5 Θ : v

where f(xn, pi) = ei ∈ P ′ by construction. �

4.3 Flat Uniform Programs

Now that we have simplified the structure of programs, we can take one further
step to simplify expressions with regard to let-bindings. One of the technical
difficulties of the framework of natural semantics is the admission of let bind-
ings in the course of evaluation. This unnecessarily distinguishes between heap
bindings to be (possibly) made in the future and current heap bindings. With
this distinction constructing a mapping between different evaluations can be
cumbersome.

Example 4.3.1 For example evaluating the four expressions

let z=let x=1,y=2 in (x,y) in (z,z)

let x=1 z=let y=2 in (x,y) in (z,z)

let y=2,z=let x=1 in (x,y) in (z,z)

let x=1,y=2,z=(x,y) in (z,z)

results in four different heaps although the intended semantics for all three is
the same.

Especially, the above distinction is not relevant with regard to the implemen-
tation of functional logic languages. And, as we will see in the next section,
omitting let-expressions during evaluation will take the framework a consid-
erable step closer towards other approaches to the operational semantics of
functional logic programs. As we will show the superfluous technical burden of
let-expressions can be lifted and flat expressions can be restricted to the simple
form shown in Figure 4.3. We will refer to the thus defined set of expressions
as FUEΣ.

The next step towards our goal is to redefine the flattening of expressions
such that ?-expressions are also applied to variable arguments, only.

4.4. EXCURSUS TERM-GRAPH REWRITING 79

flat ′(x) = x

flat ′(s(en)) = let {ym = flat ′(e′m)} in s(xn)

where (ym, e′m, xn) = varArgs(en)

flat ′(e1 ? e2) = let {ym = e′m} in x1 ? x2

where (ym, e′m, x1, x2) = varArgs(e1, e2)

flat ′(let {xk = ek} in e) = let {xk = flat ′(ek)} in flat ′(e)

In order to restrict evaluations of uniform programs to flat uniform expres-
sions, we need to redefine the way the calculus accesses the program rules. The
idea is that whenever a rule for function symbol f matching a given constructor
c is looked up in the program, the right-hand side of that rule is fully normal-
ized. This means that all let bindings of that right-hand side are introduced to
the heap at once. One advantage is that this is similar to what real implemen-
tations do, at least closer than the representation by let-expressions. Another
advantage is that this way the number of possible heaps is reduced as discussed
with Example 4.3.1.

The next proposition introduces the transformation of a flat expression such
that all bindings can be introduced to the heap at once.

Proposition 4.3.2 Let e be an expression. Then the repeated application of
the following reduction rules to flat ′(e) has a result denoted by norm(e).

let {xi = ei} in let {yj = e′j} in e

→ let {xi = ei, yj = e′j} in e

let {xi = ei, x = let {yj = e′j} in e, zk = e′′k} in e′

→ let {xi = ei, yj = e′j , x = e, zk = e′′k} in e′

A simple induction on the number of let-expressions in the given expressions
shows that

a) a repeated application of the rules must finally lead to an expression for
which no rule is applicable and

b) that this result is of the form let {zk = ek} in e where e is an expression in
the sense above.

With this restricted form of programs it is straightforward to come up with
a version of natural semantics which does not have the above problems of dis-
tinguishing future from current bindings, cf. Figure 4.4.

4.4 Excursus Term-Graph Rewriting

Before we prove the semantic equivalence of derivations in ⇓5 and ⇓6 , respec-
tively, we will provide some more motivation for this cause. The main advantage
of the new concept is that heap entries solely consist of either function or con-
structor calls. With this derivations can easily be seen as a series of term-graph

80 CHAPTER 4. UNIFORM PROGRAMS

(Val) Γ : c(xn) ⇓6 Γ : c(xn)

(Var)
Γ : e ⇓6 ∆ : v

Γ [x 7→ e] : x ⇓6 ∆ [x 7→ v] : v

(Or)
Γ : xi ⇓6 ∆ : v

Γ : x1 ? x2 ⇓6 ∆ : v
where i ∈ {1, 2}

(Match)
Γ : x ⇓6 ∆ : c(ym) ∆ [zk 7→ ek] : e ⇓6 Θ : v

Γ : f(xn, x) ⇓6 Θ : v
where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′)

Figure 4.4: Evaluating flat uniform programs

reductions where the variables identify nodes and these nodes are labeled with
constructor and function symbols, respectively.

As a simple example we depict the derivation of (selfEq coin) in the context
of the program from Example 1.1.16.

Example 4.4.1 (Term-Graph Rewriting) The term (selfEq coin) can be
represented by a graph like this:

The filling of the node labeled with selfEq denotes that we reduce this node in
the next step to:

As discussed with Examples 1.1.16 the sharing of the sub term coin is the reason
why graphs are employed rather than trees. The next step has to unfold coin.

4.4. EXCURSUS TERM-GRAPH REWRITING 81

The reduction of an ?-node is a non-deterministic choice discarding one of the
arguments. And the remaining steps are further function unfoldings.

We will suffice ourselves with this informational introduction to term-graph
rewriting and refer the interested reader to Echahed [2008]. The interesting
fact with regard to this work is that term-graph rewriting has proven to be a
convenient tool when investigating properties of functional logic programming,
see, for example the works by Antoy et al. [2006b,a], Antoy and Braßel [2007],
Antoy and Hanus [2009]. As we will show in the next example the calculus of
Figure 4.4 can be seen as operating on term-graphs.

Example 4.4.2 (Encoding the Strategy in a Term-Graph)
In Example 4.4.1 we have seen how term-graph rewriting can be illustrated in
general. We will now extend the picture by information about the control and
the sequence of variables which are to be evaluated (and updated).1

In accordance to the previous example, the control is represented by a gray
filling. Therefore, the derivation sequence begins as before:

But now a matching on the first argument of iff is needed and the according
variable is put on the control. We depict the descend to this argument by a)
moving the control to the node labeled with coin and b) marking the position
which was demanded.

1For simplicity we will allow function unfolding without matching, e.g., to go directly from
coin to True ? False without matching a constant constructor like ().

82 CHAPTER 4. UNIFORM PROGRAMS

We can now proceed with an unfolding of coin to get:

According to the rules before a non-deterministic step can occur, we need to
compute the head normal form of one of the arguments. Like in Example 4.4.1
we decide on the second argument.

Now we have found a constructor term on the control. We follow back the bold
arrow and perform the non-deterministic step on the ? we find at its end.

We still have a constructor term on the control and, accordingly, take another
step along the bold arrow. We can then perform the unfolding on the function
symbol we find at its end.

4.5. PROVING SOUNDNESS 83

The remaining derivation repeats the illustrated patterns.

Now we know that we are finished because a constructor is on the control but no
bold arrow leads to it.

As we could see, description and notation is very different for calculi in
the style examined here and term-graph rewriting. However, we hope that the
reader could see that a close correspondence can be drawn even though the
treatment here was rather informal. We turn back to proving the semantic
equivalence of the two calculi introduced in this chapter.

4.5 Proving Soundness

This section contains several steps. A first observation is that employing the
further flattening of ?-expressions flat ′(·) does not influence the resulting values
as expected. After that we define the mappings we need to prove that any
derivation in ⇓5 corresponds to a derivation in ⇓6 (Section 4.5.1) and vice
versa (Section 4.5.2). Section 4.6 summarizes the results in the terms of the
value oriented semantics of Section 2.2.5.

As described, the first step is to note that the new version of flattening does
only imply trivial changes in derivations.

Proposition 4.5.1 Γ : e ⇓ ∆ : v in flat(P) iff Γ : e ⇓ ∆ ∪∆′ : v in flat ′(P)

Proof. For simplicity suppose that both e1, e2 are not variables and contrast
the two derivations

Γ : ei ⇓5 ∆ : v
Γ : e1 ? e2 ⇓5 ∆ : v

and
Γ ∪ Γ′ [xi 7→ ei, x3−i 7→ e3−i] : xi ⇓6 ∆ ∪ Γ′ [xi 7→ v, x3−i 7→ e3−i] : v

Γ ∪ Γ′ [xi 7→ ei, x3−i 7→ e3−i] : x1 ? x2 ⇓6 ∆ ∪ Γ′ [xi 7→ v, x3−i 7→ e3−i] : v
Γ ∪ Γ′ : let {x1 = e1, x2 = e2} in x1 ? x2 ⇓6 ∆ ∪ Γ′ [xi 7→ v, x3−i 7→ e3−i] : v

where (x1, x2, e1, e2, x1, x2) = varArgs(e1, e2).
That the resulting heap is indeed of the given form is by definition of rule
(Var) and Lemma 4.1.3 which is easily transferable from ⇓3 to ⇓6 . The above
consideration constitutes the only interesting case of a simple induction yielding
the claim. �

84 CHAPTER 4. UNIFORM PROGRAMS

4.5.1 From Uniform to Flat Uniform

In analogy to the family of mappings gen(·) and free(·) from the previous chap-
ter, we define a mapping from uniform configurations to flat uniform configura-
tions.

Definition 4.5.2 On configurations

norm(Γ : e) = norm(Γ)
[
yn 7→ e′n

]
: e′

where let {yn = e′n} in e′ = norm(e).
On heaps

norm(∅) = ∅
norm(Γ [x 7→ e]) = norm(Γ)

[
yn 7→ e′n

]
[x 7→ e′]

where let {yn = e′n} in e′ = norm(e).

Likewise in analogy to Propostions 3.2.4 and 3.2.10 in the previous chapter we
need a rather technical result about the relation of norm(·) and flat ′(·).

Proposition 4.5.3 For all uniform expressions e holds:

norm(flat ′(e)) = norm(e)

Proof. By definition in Proposition 4.3.2 norm(e) is defined as fixed point of
applying reduction rules to flat ′(e). A simple induction analogue to that for
Proposition 3.2.4 shows that for all uniform expressions e holds flat ′(flat ′(e)) =
flat ′(e). �

We are now ready to develop the constructions of derivations in ⇓6 from
derivations in ⇓5 .

Lemma 4.5.4 Let P be a uniform program, Γ a heap mapping to uniform ex-
pressions and e be a uniform expression. Then it holds that if Γ : e ⇓5 ∆ : v in
P then norm(Γ : e) ⇓6 norm(∆ : v) in norm(P).

By Proposition 4.5.1, we can use the mapping flat ′(·) instead of flat() in the
following proof. In other words, we will consider ?-expressions with variables
only.
Proof. (Of Lemma 4.5.4) By induction on the structure of the proof tree.
Base cases:
(Val): We have

norm(Γ : c(xn)) ⇓6 norm(Γ : c(xn)) = norm(Γ) : c(xn) ⇓6 norm(Γ) : c(xn)

Inductive cases:
(Var): The induction hypothesis in this case is that if Γ : e ⇓5 ∆ : v in P then
norm(Γ : e) ⇓6 norm(∆ : v) in norm(P). With this assumption we have to

4.5. PROVING SOUNDNESS 85

show that if Γ [x 7→ e] : x ⇓5 ∆ [x 7→ v] : v in P then norm(Γ [x 7→ e] : x) ⇓6

norm(∆ [x 7→ v] : v) in norm(P). This claim holds because we have

norm(Γ : e) ⇓6 norm(∆ : v)
= norm(Γ)

[
yn 7→ e′n

]
: e′ ⇓6 norm(∆) : v

norm(Γ)
[
yn 7→ e′n

]
[x 7→ e′] : x ⇓6 norm(∆) [x 7→ v] : v

= norm(Γ [x 7→ e] : x) ⇓6 norm(∆ [x 7→ v] : v)

where let {yn = e′n} in e′ = norm(e).
(Let): The induction hypothesis in this case is that if Γ [xk 7→ ek] : e ⇓5 ∆ :
v in P then norm(Γ [xk 7→ ek] : e) ⇓6 norm(∆ : v) in norm(P). With this
assumption we have to show that if Γ : let {xk = ek} in e ⇓5 ∆ : v in P then
norm(Γ : let {xk = ek} in e) ⇓6 norm(∆ : v) in norm(P) because we have

norm(Γ : let {xk = ek} in e)
= norm(Γ)

[
yknk

7→ e′′knk
, xk 7→ e′′k , yn 7→ e′n

]
: e′

= norm(Γ [xk 7→ ek] : e)

where let {yknk
= e′′knk

, xk = e′′k , yn 7→= e′n} in e′ = norm(let {xk = ek} in e).
(Or): The induction hypothesis in this case is that if Γ : xi ⇓5 ∆ : v in P
then norm(Γ : xi) ⇓6 norm(∆ : v) in norm(P) where i ∈ {1, 2}. With this
assumption we have to show that if Γ : x1 ? x2 ⇓5 ∆ : v in P then norm(Γ :
x1 ? x2) ⇓6 norm(∆ : v) in norm(P). This claim holds because we have

norm(Γ : xi) ⇓6 norm(∆ : v)
= norm(Γ) : xi ⇓6 norm(∆ : v)

norm(Γ) : x1 ? x2 ⇓6 norm(∆ : v)
= norm(Γ : x1 ? x2) ⇓6 norm(∆ : v)

(Match): The induction hypothesis in this case is that if Γ : x ⇓5 ∆ : c(ym) in P
then norm(Γ : x) ⇓6 norm(∆ : c(ym)) in norm(P) and if ∆ : flat′(e) ⇓5 Θ : v
in P then norm(∆ : flat′(e)) ⇓6 norm(Θ : v) in norm(P) where f(xn, c(ym)) =
e ∈ P . With this assumption we have to show that if Γ : f(xn, x) ⇓5 Θ : v in P
then norm(Γ : f(xn, x)) ⇓6 norm(Θ : v) in norm(P). This claim holds because
we have

norm(Γ : x) ⇓6 norm(∆ : c(ym))
= norm(Γ) : x ⇓6 norm(∆) : c(ym)

norm(∆ : flat′(e)) ⇓6 norm(Θ : v)
= norm(∆)

[
yn 7→ e′n

]
: e′ ⇓6 norm(Θ : v)

norm(Γ) : f(xn, x) ⇓6 norm(Θ : v)
= norm(Γ : f(xn, x)) ⇓6 norm(Θ : v)

where let {yn = e′n} in e′ = norm(e) = norm(flat ′(e)) by Proposition 4.5.3. �

In the next section we show how to construct derivations for uniform expres-
sions from derivations employing flat uniform expressions.

4.5.2 From Flat Uniform to Uniform

The transformation examined in this chapter basically compresses derivations
in the way that the heap updates of several steps in the ⇓5 -calculus are done in

86 CHAPTER 4. UNIFORM PROGRAMS

one step in ⇓6 -derivations. Therefore, we need an auxiliary result to see that a
group of ⇓5 -steps for flat ′(e) arrives to a result comparable to the heap update
of an application of (Match) in ⇓6 .

Proposition 4.5.5 Let norm(Γ′ : e′) = Γ : e where e′ is a flat expression.
Then in any derivation for a statement Γ′ : e′ ⇓5 ∆ : v we have that Γ′ : e′

depends on Γ′′ : e such that norm(Γ′′) = Γ.

Proof. We define the body-let depth bld(e) of an expression e as

bld(e) =
{

1 + bld(e′) , if e = let {xk = ek} in e′

0 , otherwise

and proof the claim by induction on bld(e′).
Base Case, bld(e′) = 0: In this case we have by definition norm(Γ′ : e′) =
norm(Γ′) : e′ which by assumption is equal to Γ : e. Therefore, we can choose
Γ′′ := Γ′.
Inductive Case, bld(e′) = n + 1: In this case we have e′ = let {xk = ek} in e′′

where bld(e′′) = n. Therefore, we can construct by induction hypothesis

Γ′ [xk 7→ ek] : e′′ ⇓5 ∆ : v
Γ′ : let {xk = ek} in e′′ ⇓5 ∆ : v

such that Γ′ [xk 7→ ek] : e′′ ≺ Γ′′ : e and norm(Γ′′) = Γ for which we have

Γ : e by assumption
= norm(Γ′ : let {xk = ek} in e) def norm(·)
= norm(Γ′)

[
yknk

7→ e′′knk
, xk 7→ e′′k , yn 7→ e′n

]
: e′ def norm(·)

= norm(Γ′ [xk 7→ ek] : e)

where let {yknk
= e′′knk

, xk = e′′k , yn 7→= e′n} in e′ = norm(let {xk = ek} in e). �

With this auxiliary result we can now turn to the construction of ⇓5 derivations
from derivations in the ⇓6 -calculus.

Lemma 4.5.6 if Γ : e ⇓6 ∆ : v then for any Γ′ : e′ with norm(Γ′ : e′) = Γ : e
there exists a ∆′ with norm(∆′) = ∆ such that Γ′ : e′ ⇓5 ∆′ : v

Proof. (Of Lemma 4.5.6) By induction on the structure of the proof tree.
Base cases:
(Val): We have

Γ′′ : c(xn) ⇓5 Γ′′ : c(xn)
. . . by Proposition 4.5.5

Γ′ : e′ ⇓5 Γ′′ : c(xn)

Inductive cases:
(Var): The induction hypothesis in this case is that if Γ : e ⇓6 ∆ : v then for
any Γ′ : e′ with norm(Γ′ : e′) = Γ : e there exists a ∆′ with norm(∆′) = ∆
such that Γ′ : e′ ⇓5 ∆′ : v. With this assumption we have to show that if
Γ [x 7→ e] : x ⇓6 ∆ [x 7→ v] : v then for any Γ′ [x 7→ e′] : x with norm(Γ′ [x 7→ e′] :
x) = Γ [x 7→ e] : x there exists a ∆′ [x 7→ v] with norm(∆′ [x 7→ v]) = ∆ [x 7→ v]

4.6. SUMMARY 87

such that Γ′ [x 7→ e′] : x ⇓5 ∆′ [x 7→ v] : v. This claim holds because we have
the validity of the construction

Γ′′ : e′′ ⇓5 ∆′′ : v
Γ′′ [x 7→ e′′] : x ⇓5 ∆′′ [x 7→ v] : v

. . . by Proposition 4.5.5
Γ′ : e′ ⇓5 ∆′′ [x 7→ v] : v

The assumption norm(Γ′′ [x 7→ e′′]) = Γ [x 7→ e] implies that norm(Γ′′ : e′′) =
Γ : e and, therefore, the construction is valid by induction hypothesis. More-
over, for the resulting heap we have norm(∆′′ [x 7→ v]) = norm(∆′′) [x 7→ v] =
∆ [x 7→ v] as required.
(Or): The induction hypothesis in this case is that if Γ : xi ⇓6 ∆ : v then for any
Γ′ : xi with norm(Γ′ : xi) = Γ : xi there exists a ∆′ with norm(∆′) = ∆
such that Γ′ : xi ⇓5 ∆′ : v where i ∈ {1, 2}. With this assumption we
have to show that if Γ : x1 ? x2 ⇓6 ∆ : v then for any Γ′ : x1 ? x2 with
norm(Γ′ : x1 ? x2) = Γ : x1 ? x2 there exists a ∆′ with norm(∆′) = ∆ such
that Γ′ : x1 ? x2 ⇓5 ∆′ : v. This claim holds because we have the validity of the
construction

Γ′′ : xi ⇓5 ∆′′ : v
Γ′′ : x1 ? x2 ⇓5 ∆′′ : v
. . . by Proposition 4.5.5

Γ′ : e′ ⇓5 ∆′′ : v

(Match): The induction hypothesis in this case is that if Γ : x ⇓6 ∆ : c(ym) then
for any Γ′ : x with norm(Γ′ : x) = Γ : x there exists a ∆′ with norm(∆′) = ∆
such that Γ′ : x ⇓5 ∆′ : c(ym) and if ∆ [zk 7→ ek] : e ⇓6 Θ : v then for any
∆′
[
zk 7→ e′k

]
: e′ with norm(∆′

[
zk 7→ e′k

]
: e′) = ∆ [zk 7→ ek] : e there ex-

ists a Θ′ with norm(Θ′) = Θ such that ∆′
[
zk 7→ e′k

]
: e′ ⇓5 Θ′ : v where

f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′). With this assumption
we have to show that if Γ : f(xn, x) ⇓6 Θ : v then for any Γ′ : f(xn, x) with
norm(Γ′ : f(xn, x)) = Γ : f(xn, x) there exists a Θ′ with norm(Θ′) = Θ such
that Γ′ : f(xn, x) ⇓5 Θ′ : v. This claim holds because we have

Γ′′ : x ⇓5 ∆′′ : c(ym)

∆′′
[
zk 7→ e′′k

]
: e′′ ⇓5 Θ′′ : v

. . . by Proposition 4.5.5
∆′′ : flat′(e) ⇓5 Θ′′ : v

Γ′′ : f(xn, x) ⇓5 Θ′′ : v
. . . by Proposition 4.5.5

Γ′ : e′ ⇓5 Θ′′ : v

As we have the equation norm(∆′′ : flat ′(e)) = ∆ [zk 7→ ek] : e, the construction
is correct by induction hypothesis. �

4.6 Summary

In this chapter we have introduced a different form for programs which, in our
opinion, proves to be more readable. In consequence we were able to simplify the

88 CHAPTER 4. UNIFORM PROGRAMS

syntactic structure of expressions which occur during evaluation (cf. Figure 4.3)
and could reduce the calculus to four rules (cf. Figure 4.4). In addition we have
given some more motivation by illustrating the relation to term-graph rewriting
in Section 4.4. In this section we will summarize the obtained results in one
comprehensive theorem which is formulated in the terms of the value oriented
semantics of Section 2.3.

In the course of this chapter we have changed the syntax of expressions.
Accordingly we need to adjust the definition of the value oriented semantics.

Definition 4.6.1

[[e]]P6 := {c(Γ∗(xn)) | ∅ [xk 7→ ek] : e′ ⇓6 Γ : c(xn)}

where let {xk = ek} in e′ = norm(e)

Theorem 2
[[e]]P3 = [[e]]uf (P)

6

where

• vc(P) is the program P with case-expressions restricted to variable argu-
ments (Proposition 4.1.4),

• lift l(P ′)(P
′) is the program P ′ with all labeled case-expressions lifted (Corol-

lary 4.1.11),

• uni(P ′′) is the program P ′′ with all case-expressions replaced by calls to
functions with matching (Proposition 4.2.2), and finally,

• uf (P) is an abbreviation for uni(lift l(vc(P))(vc(P)))

In the development towards the calculus for flat uniform programs, we have
introduced several small transformations: restricting case-expressions to vari-
able arguments (Proposition 4.1.4), then lifting nested case-expressions to new
functions (Corollary 4.1.11), replacing case-expressions altogether by a call to
the new function in a different calculus (Proposition 4.2.2), and, finally, also
restricting ?-expressions to variable arguments (Proposition 4.5.1). When ex-
pressions are evaluated in the context of programs transformed in these ways,
the resulting heaps are changed. For example, there are more bindings in the
heap when case- and ?-expressions are restricted to variable arguments and there
are no case-expressions when these are replaced by calls to matching functions.
The important point to note, however, is that the value extraction ∆∗() for the
resulting heaps ∆, does not change for each of the transformations. These are
simple consequences of the construction principles introduced in the according
proofs.

• When case- or ?-expressions are restricted to variable arguments, the addi-
tional bindings do not influence ∆∗() as they are only reachable via these
case- or ?-expression. By Definition 2.2.5 the value extraction ∆∗() does
not follow the arguments of such expressions.

• When nested case-expressions are lifted to new functions or when case-ex-
pressions are replaced by matching functions the resulting heaps may con-
tain the according function symbols and the branches of case-expressions

4.6. SUMMARY 89

in the heap change. By definition 2.2.5 the value extraction treats case-
expressions and function calls in the same way and does not consider the
case-branches.

Proof. (Of Theorem 2)

We first show that for any heap Γ and any variable x with x ∈ dom(Γ) ⇔
x ∈ dom(norm(Γ)) holds:

Γ∗(x) = norm(Γ)∗(x) (1)

We prove this claim by Noetherian induction on the size of Γ, cf. Proposi-
tion 3.3.2.
Base Case, |Γ| = 0 implies Γ = ∅ as well as norm(Γ) = ∅ and the claim holds
trivially.
Inductive Cases, suppose the claim holds for all heaps with a smaller size than
Γ. As programs do not contain free variables, the following case distinction is
full.

If x 6∈ dom(Γ) then by assumption x 6∈ dom(norm(Γ)) and we have Γ∗(x) =
norm(Γ)∗(x) = x.
If Γ = Γ′ [x 7→ y] then x 6= y and we have Γ∗(x) = Γ′∗(y) as well as norm(Γ)∗(x) =
norm(Γ′) [x 7→ y]∗(x) = norm(Γ′)∗(y) and the claim follows by induction hy-
pothesis.
If Γ = Γ′ [x 7→ c(xn)] then Γ∗(x) = c(Γ′∗(xn)) and we have that norm(Γ)∗(x) =
norm(Γ′) [x 7→ c(xn)]∗(x) = c(norm(Γ′)∗(xn)) and the claim follows by induc-
tion hypothesis.
If Γ = Γ′ [x 7→ e] where e is a function call, ?-expression or a case-expression
then Γ∗(x) = x and norm(Γ)∗(x) = norm(Γ′) [x 7→ e]∗(x) = x
If Γ = Γ′ [x 7→ let {xk = ek} in e] then Γ∗(x) = Γ′ [xk 7→ ek, x 7→ e]∗(x) and
norm(Γ) = norm(Γ′ [xk 7→ ek, x 7→ e]) and the claim follows again by induc-
tion hypothesis.

By Lemma 4.5.4 we have that ∅ : flat ′(e) ⇓5 Γ : c(xn) in P implies the
existence of the derivation ∅ [xk 7→ ek] : e′ ⇓6 norm(Γ) : c(xn) such that
let {xk = ek} in e′ = norm(e). Therefore, we can conclude by (1):

{c(Γ∗(xn)) | ∅ : flat ′(e) ⇓5 Γ : c(xn) in P}
⊆ {c(∆∗(xn)) | ∅ [xk 7→ ek] : e′ ⇓6 ∆ : c(xn) in P}

(2)

Likewise by Lemma 4.5.6 we have that ∅ [xk 7→ ek] : e′ ⇓6 norm(Γ) : c(xn)
implies the existence of the derivation ∅ : flat ′(e) ⇓5 Γ : c(xn) in P whenever
norm(e) = let {xk = ek} in e′. Therefore, we can conclude for such e:

{c(∆∗(xn)) | ∅ [xk 7→ ek] : e′ ⇓6 ∆ : c(xn) in P}
⊆ {c(Γ∗(xn)) | ∅ : flat ′(e) ⇓5 Γ : c(xn) in P}

(3)

90 CHAPTER 4. UNIFORM PROGRAMS

With these facts the following equations hold.

[[e]]P3
= {c(Γ∗(xn)) | ∅ : flat(e) ⇓3 Γ : c(xn) in P} Def 2.2.5
= {c(Γ′∗(xn)) | ∅ : flat(e) ⇓3 Γ′ : c(xn) in P ′ := vc(P)} Prop 4.1.4
= {c(Γ′∗(xn)) | ∅ : flat(e) ⇓3 Γ′ : c(xn) in P ′′ := lift l(P ′)(P

′)} Cor 4.1.11
= {c(Γ′′∗(xn)) | ∅ : flat(e) ⇓5 Γ′′ : c(xn) in uni(P ′′)} Prop 4.2.2
= {c(Γ′′′∗(xn)) | ∅ : flat ′(e) ⇓5 Γ′′′ : c(xn) in flat ′(uni(P))} Prop 4.5.1
= [[e]]P5 Def 2.2.5
⊆ {c(∆∗(xn)) | ∅ [xk 7→ ek] : e′ ⇓6 ∆ : c(xn) in uf (P)} (2)
= [[e]]P6 Def 4.6.1
⊆ {c(Θ∗(xn)) | ∅ : flat ′(e) ⇓5 Θ : c(xn) in uf (P)} (3)
= [[e]]P5 Def 2.2.5

�

The next chapter is dedicated to one of the main results of this work: the
transformation of functional logic programs to functional programs preserving
many important properties.

Chapter 5

Eliminating
Non-Determinism

In Chapter 1 we have introduced lazy functional logic programming. We de-
scribed that programming languages adhering to this paradigm extend the set-
ting of lazy functional programming by non-deterministic choices, free variables
and narrowing. In the previous chapters we have shown that these extensions
can be stripped down to the existence of a non-deterministic choice operator
(?) and that functional logic programs can be restricted to uniform programs.

In this chapter we will describe how lazy functional logic programs can be
transformed to purely functional programs while fully preserving laziness and
sharing. There have been many approaches to express logic computations in
functional programs. Other existing approaches to simulate logic features in
functional languages do, however, either not preserve laziness, i.e., they can
only model strict logic programming like in Prolog or they reimplement sharing
instead of employing the sharing of the host language. Lazy functional logic
programming however, has interesting properties supporting a more declarative
style of programming search without sacrificing efficiency.

We will present a technique to reduce all logic extensions to the single prob-
lem of generating unique identifiers. The impact of this reduction is a general
scheme for compiling functional logic programs to lazy functional programs
without side effects, see also the detailed motivation in Section 1.2.1.

One of the design goals is that the purely functional parts of a program
should not suffer from significant run-time overhead. The content of Sections 5.1
and 5.2 has been published as [Braßel and Fischer, 2008]. Central ideas of
Section 5.3 are contained in [Braßel and Huch, 2007a] but have been revised
considerably for the new transformation scheme.

5.1 Informal Presentation of the Transformation

The interaction of laziness and logic programming features — especially non-
determinism — is not trivial both semantically, as well as operationally, i.e.,
from the point of view of an implementation. Current lazy functional logic
programming languages have agreed on a model coined call-time choice that
supports the intuition that variables are placeholders for values rather than

91

92 CHAPTER 5. ELIMINATING NON-DETERMINISM

possibly non-deterministic computations. An important consequence of this
computational model is that a lazy (call-by-need) computation has the same
results as an eager (call-by-value) computation of the same program (if the
latter terminates). The according semantic distinctions have been introduced
and illustrated in Sections 1.1.1.3 and 1.1.2, especially Section 1.1.2.3.

In this section we describe the problems of translating lazy functional logic
programs and informally present the idea behind our solution. We first show
that a naive encoding of non-determinism in a functional language either violates
call-time choice or looses laziness (Section 5.1.1) and present our approach to
correctly implement it (Section 5.1.2).

5.1.1 Naive Functional Encoding of Non-Determinism

In a first attempt, we might consider to represent non-deterministic values using
lists [Wadler, 1985] and lift all operations to the list type.

Example 5.1.1 Reconsider the code of Examples 1.1.3, 1.1.13 and 1.1.16. In
the approach of [Wadler, 1985] the program that computes (selfEq coin) would
be translated as follows.

goal :: [Bool]

goal = selfEq coin

coin :: [Bool]

coin = [True,False]

not, selfEq :: [Bool] → [Bool]

not bs = [False | True ← bs] ++
[True | False ← bs]

selfEq bs = iff bs bs

iff :: [Bool] → [Bool] → [Bool]

iff xs ys = [y | True ← xs, y ← ys] ++
[y | False ← xs, y ← not ys]

This translation does not adhere to call-time choice semantics because argument
variables of functions denote possibly non-deterministic computations rather
than values. For example, the argument bs of selfEq represents all non-deterministic
results of this argument and the function iff might choose different values for
each of its arguments. Consequently, the result of evaluating goal is [True,False,False,True]

which resembles a call-by-name derivation of the corresponding functional logic
program rather than call-by-need, cf. Section 1.1.1.3.

In order to model call-time choice, we could translate all functions such
that they take deterministic arguments and use the list monad to handle non-
determinism.

Example 5.1.2 The above example would be translated as follows (the defini-
tion of coin is unchanged):

goal :: [Bool]

goal = do { b ← coin; selfEq b }

5.1. INFORMAL PRESENTATION OF THE TRANSFORMATION 93

not, selfEq :: Bool → [Bool]

not True = return False

not False = return True

selfEq b = iff b b

iff :: Bool → Bool → [Bool]

iff True b = return b

iff False b = not b

Here, the value of goal is [True,True] as in a call-by-value derivation of a
functional logic program, i.e., it corresponds to call-time choice.

Unfortunately, the resulting program is strict, e.g., the call to coin is evalu-
ated before passing its result to the function selfEq. Strictness can lead to un-
expected non-termination and performance problems due to unnecessary eval-
uations. In lazy functional logic programming, unnecessary evaluation often
means unnecessary search. The consequence may even be exponential overhead
which is clearly unacceptable. We have seen in Example 1.1.18 that for pro-
grams in generate-and-test style such overhead can be significantly reduced by
laziness.

With a naive approach, and also with sophisticated optimizations [Hinze,
2000, Kiselyov, 2005, Naylor et al., 2007], we have the choice between laziness
and call-time choice, but we cannot obtain both. In the following sections we
present a transformation from functional logic to purely functional programs
which does not produce monadic programs. Following the original publica-
tion of the presented transformation [Braßel and Fischer, 2008] a new approach
succeeded in preserving laziness while targeting monadic functional programs
[Fischer et al., 2009] with a reimplementation of sharing. We will discuss the
differences to the latter approach in the next chapter.

5.1.2 Combining Laziness and Call-Time Choice

In our approach to translating lazy functional logic programs, we do not use
lists to represent non-determinism. Instead, we introduce a new constructor
Choice :: ID → a → a → a and use it to build trees of non-deterministic values.
Of course, a constructor of this type cannot be defined in Haskell, but in order
to keep the description of our transformation as simple as possible, we do not
consider types in the following. In an implementation we can introduce different
choice constructors for every data type, as explained in Chapter 6.

The type ID in the first argument of Choice is an abstract type with the
following signature:

type ID

instance Eq ID

initID :: ID

leftID, rightID :: ID → ID

The functions leftID and rightID compute unique identifiers from a given iden-
tifier and are used to pass unique identifiers to every part of the computation
that needs them. In order to ensure that the generated identifiers are indeed
unique, the functions need to satisfy specific properties:

94 CHAPTER 5. ELIMINATING NON-DETERMINISM

• leftID and rightID must not yield the same identifier for any arguments,

• they never yield an identifier equal to initID, and

• both functions yield different results when given different arguments.

More formally, we can state that leftID and rightID have disjoint images that
do not contain initID, and are both injective. Id est, that for all i, j ∈ID we
have

initID 6= leftID(i) ∧ initID 6= rightID(i) (5.1)
leftID(i) 6= rightID(j) (5.2)

leftID(i) = leftID(j) ∨ rightID(i) = rightID(j)⇒ i = j (5.3)

In this chapter we will use variables i, j to denote identifiers rather than nat-
ural numbers as we did in the remaining work. The property of the uniqueness
of identifiers can be expressed as in the following proposition.

Proposition 5.1.3 Let f1, . . . , fn and g1, . . . , gm be sequences of functions such
that fk, gl ∈ {leftID, rightID} for all 1 ≤ k ≤ n and 1 ≤ l ≤ m. Then
fn ◦ . . . ◦ f1(initID) = gm ◦ . . . ◦ g1(initID) implies n = m and fk = gk for all
1 ≤ k ≤ n.

Proof. Suppose there exist n,m such that there are sequences f1, . . . , fn and
g1, . . . , gm with fn ◦ . . .◦f1(initID) = gm ◦ . . .◦g1(initID) and n 6= m or fk 6= gk

for some 1 ≤ k ≤ n. Then, without loss of generality, we can choose n to be the
smallest such number. Now there are three cases:

1. n > 0, fn 6= gm:
In this case there must be identifiers i, j such that leftID(i) = rightID(j)
contradicting 5.2.

2. n > 0, fn = gm:
By property 5.3 we have fn−1, . . . , f1(initID) = gm−1, . . . , g1(initID).
Therefore, n would not be smallest.

3. n = 0:
In this case there must be an identifier i such that gm(i) = initID. There-
fore, we either have leftID(i) = initID or rightID(i) = initID contradict-
ing Property 5.1.

�

Like in the above proposition we are only interested in those identifiers which
can be generated by finite sequences of applications of the functions leftID and
rightID to the identifier initID.

ID := {fn ◦ . . . ◦ f1(initID) | fn ∈ {leftID, rightID}, n ∈ N0}

In other words a standard model of identifiers would be the objects freely
generated from the signature {initID0, leftID1, rightID1}.

A possible implementation of identifiers uses positive integers of unbounded
size:

5.1. INFORMAL PRESENTATION OF THE TRANSFORMATION 95

type ID = Integer -- positive

initID :: ID

initID = 1

leftID, rightID :: ID → ID

leftID i = 2∗i
rightID i = 2∗i + 1

This implementation satisfies the given properties for all positive integers. In
fact, the choice of 1 in the definition of initID is arbitrary—any positive integer
would suffice. This implementation is not perfect because the generated identi-
fiers grow rapidly and many integers might not be used as identifiers depending
on how the functions leftID and rightID are used. However, it is purely func-
tional and serves well as a prototype implementation. There are more efficient
implementations [Augustsson et al., 1994] that make selected use of side effects
without sacrificing compiler optimizations.

Unique identifiers are crucial in our approach to translate lazy functional
logic programs because they allow to detect sharing of non-deterministic choices.
If the result of a computation contains occurrences of Choice with the same iden-
tifier, the same alternative of both choices needs to be taken when computing the
(functional logic) values1 of this expression. In order to label non-deterministic
choices with unique identifiers, we need to pass them to every position in the
program that eventually performs a non-deterministic choice.

Example 5.1.4 As a first example, we consider the translation of (selfEq coin)

in our approach:

goal :: ID → Bool

goal i = selfEq (coin i)

coin :: ID → Bool

coin i = Choice i True False

not, selfEq :: Bool → Bool

not True = False

not False = True

not (Choice i x y) = Choice i (not x) (not y)

selfEq b = iff b b

iff :: Bool → Bool → Bool

iff True z = z

iff False z = not z

iff (Choice i x y) z = Choice i (iff x z) (iff y z)

We pass an identifier to the operations goal and coin because they either
directly create a Choice or call an operation which does. The functions selfEq,
iff, and not do not need an additional parameter. We only have to extend
their pattern matching to handle choices. If a value constructed by Choice is
demanded, we return a choice with the same identifier and reapply the function

1We define the computation of functional logic values in Section 5.2.1.

96 CHAPTER 5. ELIMINATING NON-DETERMINISM

to the different alternatives to compute the alternatives of the result. With
these definitions (goal initID) evaluates to the following result (assuming initID

yields 1).

Choice 1 (Choice 1 True False) (Choice 1 False True)

This result can be interpreted as Choice 1 True True because for all occurrences
of False we would need to take once a left branch and once a right branch of a
Choice labeled with 1. In our approach, however, choices with the same label
are constrained to take the same branch when computing non-deterministic
results. The invalid branches of the inner choices are, hence, pruned away. As a
result, we obtain call-time choice semantics without sacrificing laziness: coin is
evaluated by iff — not before passing it to selfEq. Moreover, because of laziness
the computations leading to the invalid results False are never evaluated (see
Section 5.2.1).

Example 5.1.5 A more complex example is the translation of permute (see
Examples 1.1.12 and 1.1.18):

permute :: ID → [a] → [a]

permute _ [] = []

permute i (x:xs) = insert (leftID i) x (permute (rightID i) xs)

permute i (Choice il xs ys) = Choice il (permute i xs) (permute i ys)

insert :: ID → a → [a] → [a]

insert i x [] = [x]

insert i x (y:ys) =
Choice i (x:y:ys) (y : insert (leftID i) x ys)

insert i x (Choice il xs ys) =
Choice il (insert i x xs) (insert i x ys)

Both functions take an identifier as additional argument because they either
directly create a Choice or call an operation which does and both functions make
use of leftID and rightID to generate new identifiers that are passed down to
sub computations.

5.2 Formal Definition of Transformation

For the following, assume a given uniform program P over a signature Σ. We
assume that Σ does not contain any of those symbols which we want to add as
discussed in Section 5.1.2 These symbols are

Σ0 := {initID0, leftID1, rightID1, Choice3, hnf2}

where the symbol hnf will be introduced in Section 5.2.1. In this section we
define how to produce a (purely functional) program P ′ over a signature Σ′.

One of the design goals of the transformation is that purely functional com-
putations should be as efficient as possible. To achieve this we have to distin-
guish between purely functional and (potentially) non-deterministic operations.
A necessary requirement for an operation to be non-deterministic is that it de-
pends on the operation ?2. In other words, it either calls ?2 directly or calls
a function depending on ?2. Formally, the set of non-deterministic operations
N ⊆ Σ is the smallest set such that

N := {?2} ∪ {f | ∃l = r ∈ p(f) : ∃g(en) ∈ sub(r) : gn ∈ N}

5.2. FORMAL DEFINITION OF TRANSFORMATION 97

All elements of N are extended by an extra argument to form the new signature
Σ′ := ΣID ∪ {Choice3} ∪ Σ \N ∪ {fn+1 | fn ∈ N}.

One of the main concepts discussed in Section 5.1.2 is that each non-deter-
ministic sub expression is extended by a unique identifier generated by leftID,
rightID and initID. In the following it will be necessary to distinguish expres-
sions evaluating to identifiers and expressions (possibly) evaluating to a value
in the sense of the original program P .

Definition 5.2.1 Let VarID be an enumerable set of variables disjoint from Var
and let ΣID be the signature defined as

ΣID := {initID0, leftID1, rightID1}

Then the well typed expressions for the transformed version of program P are
defined by the following production rules.

i ::= x x ∈ VarID
| initID | leftID(i) | rightID(i)
| let {xn = in} in i xn ∈ VarID ∈ Var

e ::= x x ∈ Var
| s(en) s ∈ Σ(n), s 6∈ N
| f(i, en) f ∈ Σ(n), f ∈ N
| ?(i, e1, e2)
| Choice(i, e1, e2)
| let {xn = in, ym = em} in e xn ∈ VarID, ym ∈ Var

The set of terms produced by the rules for i is called ID-expressions and will be
denoted by EID. The set of terms produced by the rules for e are called program
expressions or P-expressions for short and will be denoted by EP .

In accordance to the above definition, a well-typed heap Γ is a mapping from
Var ∪ VarID to EP ∪ EID such that (x, e) ∈ Γ, e ∈ EP imply x ∈ Var and
(y, i) ∈ Γ, i ∈ EID imply y ∈ VarID.

Without giving a new formal definition, we assume from now on that the trans-
formations flat ′(·) and norm(·) yield well typed results. This means in particular
that any fresh variable introduced for an expression in EP is in Var and any
fresh variable introduced for an ID-expression is taken from VarID.

Let i ∈ EID be an ID-expression. Then the function freshn(i) generates an
expression yielding a different identifier from i for each natural number n. This
is achieved by adding n times the function rightID and finally leftID.2

freshn(i) = leftID(rightIDn(i))

It is easy to see, given the properties of leftID, rightID, that for arbitrary
n the identifiers fresh1(i), . . . , freshn(i) are pairwise different and also differ-
ent from i, cf. Proposition 5.1.3. We need, however, a stronger property of
freshn(i), namely that also all identifiers generated by applying leftID,rightID
to any of the freshn(i) will be different from any other. This is also implied
by Proposition 5.1.3 but less obvious. Therefore, we define some convenient
notation and prove this property explicitly.

2Note that we are quite wasteful in the generation of identifiers. We do so for simplicity; a
transformation generating a minimal amount of calls to leftID and rightID is straightfor-
ward by counting non-deterministic sub terms.

98 CHAPTER 5. ELIMINATING NON-DETERMINISM

Definition 5.2.2 Let i, j be identifiers. We say that j is generated from i, in
symbols i � j, iff there is a finite sequence of functions fn ∈ {leftID, rightID}
such that fn ◦ . . . ◦ f1(i) = j. We say that i is independent from j, in symbols
i ‖ j, iff we have neither i � j nor j � i. By ≺ we define the strict part of �,
i.e. i ≺ j iff i � j and i 6= j.

With this notation we can see that ID = {i | initID � i}. More importantly,
we have:

Proposition 5.2.3

a) The relation � is a partial order.

b) For any i, i′, j, j′ ∈ ID we have that i ‖ j and i � i′ and j � j′ imply i′ ‖ j′.

Proof. a) A partial order is reflexive, transitive and antisymmetric. The relation
� is reflexive because we can take the empty sequence of functions , i.e., fn

where n = 0, to generate any i from i. It is transitive as for any i � j and
j � k we have that j = fn ◦ . . . ◦ f1(i) and gm ◦ . . . ◦ g1(j) = k we have
gm◦. . .◦g1◦fn◦. . .◦f1(i) = k and, thus, i � k. Finally, we have to show that � is
antisymmetric, i.e., for all i, j holds that i � j and j � i together imply i = j: By
definition we have fn, gm ∈ {leftID, rightID} such that i = fn ◦ . . . ◦ f1(initID)
and j = gm ◦ . . . ◦ g1(initID). Furthermore, by definition of � we have f ′n′ , g′m′

such that

f ′n′ ◦ . . . ◦ f ′1 ◦ fn ◦ . . . ◦ f1(initID) = gm ◦ . . . ◦ g1(initID)
g′m′ ◦ . . . ◦ g′1 ◦ gm ◦ . . . ◦ g1(initID) = fn ◦ . . . ◦ f1(initID)

By Proposition 5.1.3 this implies that we have f ′n′ , fn = gm and n′ + n = m

as well as g′m′ , gm = fn and m′ + m = n. This implies n′ = m′ = 0, n = m,
fn = gm, and, all in all, i = j.

b) Suppose we have i, i′, j, j′ ∈ ID we have i ‖ j, i � i′, j � j′ but i′ � j′.
Then we have two ways to generate j′ from initID, namely the sequence of
functions generating j′ from j from initID and the one generating j′ from i′

from i from initID. By the assumption i ‖ j, these sequences must be different
which contradicts Proposition 5.1.3. �

The next definition covers the transformation of expressions. It adds expressions
of type ID to each call to an operation in N . The added expressions are all
generated from a given ID-expression i ∈ EID.

Definition 5.2.4 (Adding Identifiers to Expressions)

tr(i, x) = x

tr(i, let {xn = en} in e) = let {xn = tr(in, en)} in tr(in+1, e)

tr(i, s(en)) =
{
s(tr(in, en)) , if sn 6∈ N
s(in+1, tr(in, en)) , if sn ∈ N

where

in+1 = freshn+1(i)

5.2. FORMAL DEFINITION OF TRANSFORMATION 99

The transformation ensures that every call to a potentially non-deterministic
operation is extended by a unique identifier, as is the content of the next propo-
sition.

Proposition 5.2.5 Let e be an expression and i ∈ VarID be a variable of type
ID and let {idn} be the set of identifier expressions occurring in tr(i, e). Then
for any identifier i and the substitution σ = {i 7→ i} we have that the identifiers
in σ(idn) are pairwise independent and each ej occurs not more than once in
tr(i, e).

Proof. We first remark that for any n ∈ N0 we have by construction and
Property 5.2.3.b) that σ(i) ≺ σ(freshn(i)) and for any m ∈ N0 such that n 6= m
we also have σ(freshn(i)) ‖ σ(freshm(i)).

We prove by induction on the structure of e that the identifiers σ(idn) are
pairwise independent, each occurs not more than once and for j ∈ {σ(idn)} we
have i ≺ j.
Base Case, e = x: The claim holds trivially since σ(idn) = ε.
Inductive cases,
e = let {xn = en} in e′ : Suppose that the claim holds for all en and e′. Then it
also holds for let {xn = en} in e′ since by the above remark the σ(freshn+1(i))
are all pairwise different and Proposition 5.2.3.b) ensures that the same holds
for all identifiers generated from them. Moreover, if each identifier appears at
most once in the en and e′ then they also do in let {xn = en} in e′ as no identifier
is introduced.
e = s(en): If s 6∈ N the case is analog to that of let above. For s ∈ N we have
in addition that σ(freshn+1(i)) is independent from all of the σ(freshn(i)) and
can therefore not appear in any of the σ(tr(eid, en)). �

We are now ready to transform the rules defining an operation f 6= ?2.
Each rule is transformed by an application of tr(i, ·) to both the left and the
right-hand side of the rule where i is a fresh variable not occurring anywhere
in p.3 The definitions are extended by the additional rules to lift the Choice

constructor (see Section 5.1.2).

tr(i, p)(f) :=

 tr(i, ln)=tr(i,flat(rn)),
f(xm, Choice(x, y, z))

=Choice(x, f(xm, y), f(xm, z))

 ,
p(f) = ln=rn,
f ∈ FΣ

m+1

The transformed program is extended by the definitions of the external op-
erations initID, leftID, rightID. Possible implementations were discussed in
Section 5.1.2.

Later on the operation ?2 will be replaced by ?3 which is the only one to
introduce the constructor Choice.

?(i, x, y) = Choice(i, x, y)
3That the right-hand side is also flattened happens for the purely technical reason to make

the soundness prove in Section 5.3 more concise. Flattening does not impose any restriction
on programs, as it can be easily seen that an expression can be evaluated in the context of a
program P iff it can be evaluated in a flattened version of P . This is because the right-hand
side of the program rules are flattened anyway when applying rule (fun) and flattening is
idempotent, i.e., flat(flat(e)) = flat(e).

100 CHAPTER 5. ELIMINATING NON-DETERMINISM

Before we do so we first give an alternative definition as:

?(i, x, y) = x ? y

This gives us the chance to put in an intermediate step to show that the
addition of identifiers does not influence the overall evaluation. With this inter-
mediate step the complete proof of soundness is easier to comprehend. Accord-
ingly, the next step is to map configurations with identifiers to ones without by
simply eliminating every occurrence. This is the aim of the next definition and
the following lemma.

Definition 5.2.6

noi(x) = x
noi(s(xn)) = s(xn) if s 6∈ N
noi(f(x, xn)) = f(xn) if f ∈ N
noi(x1 ? x2) = x1 ? x2

noi(Γ) = {(x,noi(e)) | (x, e) ∈ Γ, x 6∈ VarID}

noi(Γ : e) = noi(Γ) : noi(e)

Lemma 5.2.7 Let P be the transformed version of a program P ′ and e ∈ EP

be a P -expression and Γ a well typed heap. Then we have if Γ : e ⇓6 ∆ : v in P
then noi(Γ : e) ⇓6 noi(∆ : v) in P ′.

Proof. (Of Lemma 5.2.7) By induction on the structure of the proof tree.
Base cases:
(Val): We have

noi(Γ : c(xn)) ⇓6 noi(Γ : c(xn)) = noi(Γ) : c(xn) ⇓6 noi(Γ) : c(xn)

Inductive cases:
(Var): The induction hypothesis in this case is that if Γ : e ⇓6 ∆ : v in P then
noi(Γ : e) ⇓6 noi(∆ : v) in P ′. With this assumption we have to show that if
Γ [x 7→ e] : x ⇓6 ∆ [x 7→ v] : v in P then noi(Γ [x 7→ e] : x) ⇓6 noi(∆ [x 7→ v] : v)
in P ′. This claim holds because we have

noi(Γ : e) ⇓6 noi(∆ : v)
= noi(Γ) : noi(e) ⇓6 noi(∆) : v

noi(Γ) [x 7→ noi(e)] : x ⇓6 noi(∆) [x 7→ v] : v
= noi(Γ [x 7→ e] : x) ⇓6 noi(∆ [x 7→ v] : v)

as by assumption x ∈ EP and Γ [x 7→ e] is well typed. Therefore, e must also be
in EP .
(Or): The induction hypothesis in this case is that if Γ : xi ⇓6 ∆ : v in P then
noi(Γ : xi) ⇓6 noi(∆ : v) in P ′ where i ∈ {1, 2}. With this assumption we have
to show that if Γ : x1 ? x2 ⇓6 ∆ : v in P then noi(Γ : x1 ? x2) ⇓6 noi(∆ : v) in
P ′. This claim holds because we have

noi(Γ : xi) ⇓6 noi(∆ : v)
= noi(Γ) : xi ⇓6 noi(∆ : v)

noi(Γ) : x1 ? x2 ⇓6 noi(∆ : v)
= noi(Γ : x1 ? x2) ⇓6 noi(∆ : v)

5.2. FORMAL DEFINITION OF TRANSFORMATION 101

as xi must be in Var.
(Match): The induction hypothesis in this case is that if Γ : x ⇓6 ∆ : c(ym)
in P then noi(Γ : x) ⇓6 noi(∆ : c(ym)) in P ′ and if ∆ [zk 7→ ek] : e ⇓6 Θ : v
in P then noi(∆ [zk 7→ ek] : e) ⇓6 noi(Θ : v) in P ′ where f(xn, c(ym)) = e′ ∈
P and let {zk = ek} in e = norm(e′). With this assumption we have to show
that if Γ : f(xn, x) ⇓6 Θ : v in P then noi(Γ : f(xn, x)) ⇓6 noi(Θ : v) in P ′.
This claim holds because we have

noi(Γ : f(xn, x))
= noi(Γ) : f(xn, x) noi(Γ : x) = noi(Γ) : x
. . .
noi(∆ : c(ym)) = noi(∆) : c(ym) noi(∆ [zk 7→ ek] : e) = noi(∆)

[
aj 7→ noi(e′j)

]
: noi(e)

. . .
noi(Θ : v)

noi(Θ : v)

whenever f 6∈ N because, where by assumption about P and P ′ we have
let {aj = noi(e′j)} in e = norm(noi(e)) such that {aj = noi(e′j)} ⊆ {zk = ek}
and f(xn, c(ym)) = noi(e) ∈ P ′.
If f ∈ N we have for some variable i ∈ VarID and ei ∈ EID:

noi(Γ) : f(xn, x) ⇓6 noi(Θ : v)
= noi(Γ [i 7→ ei] : f(i, xn, x)) ⇓6 noi(Θ : v)

and by construction f(i, xn, c(ym))) = e ∈ P iff f(xn, c(ym))) = noi(e) ∈ P ′. �

In the other direction it is possible to add arbitrary identifiers as they are
not yet considered during evaluation.

Lemma 5.2.8 It holds that if Γ : e ⇓6 ∆ : v in P then for all well typed Γ′ : e′

with noi(Γ′) = Γ and noi(e′) = e there exists a ∆′ such that noi(∆′) = ∆
and Γ′ : e′ ⇓6 ∆′ : v in P ′.

Proof. (Of Lemma 5.2.8) By induction on the structure of the proof tree.
Base cases:
(Val): We have Γ′ : c(xn) ⇓6 Γ′ : c(xn) as noi(e′) = c(xn) implies e′ = c(xn).
Inductive cases:
(Var): The induction hypothesis in this case is that if Γ : e ⇓6 ∆ : v in P then
for all well typed Γ′ : e′ with noi(Γ′) = Γ and noi(e′) = e there exists a ∆′

such that noi(∆′) = ∆ and Γ′ : e′ ⇓6 ∆′ : v in P ′. With this assumption we
have to show that if Γ [x 7→ e] : x ⇓6 ∆ [x 7→ v] : v in P then for all well typed
Γ′ : e′ with noi(Γ′) = Γ [x 7→ e] and noi(e′) = x there exists a ∆′ such that
noi(∆′) = ∆ [x 7→ v] and Γ′ : e′ ⇓6 ∆′ : v in P ′. This claim holds because we
have

Γ′ : e′ ⇓6 ∆′ : v
Γ′ [x 7→ e′] : x ⇓6 ∆′ [x 7→ v] : v

as noi(e′′) = x implies e′′ = x and noi(Γ′′) = Γ [x 7→ e] implies the existence of
Γ′, e′ such that Γ′′ = Γ′ [x 7→ e′] and noi(Γ′) = Γ and noi(e′) = e. Furthermore,
noi(∆′) = ∆ implies noi(∆′ [x 7→ v]) = ∆ [x 7→ v].

102 CHAPTER 5. ELIMINATING NON-DETERMINISM

(Or): The induction hypothesis in this case is that if Γ : xi ⇓6 ∆ : v in P then
for all well typed Γ′ : e′ with noi(Γ′) = Γ and noi(e′) = xi there exists a ∆′

such that noi(∆′) = ∆ and Γ′ : e′ ⇓6 ∆′ : v in P ′ where i ∈ {1, 2}. With this
assumption we have to show that if Γ : x1 ? x2 ⇓6 ∆ : v in P then for all well
typed Γ′ : e′ with noi(Γ′) = Γ and noi(e′) = x1 ? x2 there exists a ∆′ such
that noi(∆′) = ∆ and Γ′ : e′ ⇓6 ∆′ : v in P ′. This claim holds because we have

Γ′ : xi ⇓6 ∆′ : v
Γ′ : x1 ? x2 ⇓6 ∆′ : v

as noi(e′) = x1 ? x2 implies e′ = x1 ? x2 and noi(xi) = xi.
(Match): The induction hypothesis in this case is that if Γ : x ⇓6 ∆ : c(ym) in
P then for all well typed Γ′ : e′ with noi(Γ′) = Γ and noi(e′) = x there exists
a ∆′ such that noi(∆′) = ∆ and Γ′ : e′ ⇓6 ∆′ : c(ym) in P ′ and if ∆ [zk 7→ ek] :
e ⇓6 Θ : v in P then for all well typed ∆′ : e′ with noi(∆′) = ∆ [zk 7→ ek] and
noi(e′) = e there exists a Θ′ such that noi(Θ′) = Θ and ∆′ : e′ ⇓6 Θ′ : v in
P ′ where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′). With this
assumption we have to show that if Γ : f(xn, x) ⇓6 Θ : v in P then for all well
typed Γ′ : e′ with noi(Γ′) = Γ and noi(e′) = f(xn, x) there exists a Θ′ such
that noi(Θ′) = Θ and Γ′ : e′ ⇓6 Θ′ : v in P ′. This claim holds because we have

Γ′ : x ⇓6 ∆′ : c(ym) ∆′
[
zk 7→ e′k

]
: e′ ⇓6 Θ′ : v

Γ′ : f(xn, x) ⇓6 Θ′ : v

if f 6∈ N as in this case noi(e′) = f(xn, x) implies e′ = f(xn, x) as well
as f(xn, c(ym)) = e′′ ∈ P ′ such that norm(e′′) = let {zk = e′k} in e′ =
e′′ where noi(e′k) = ek. Consequently, and because noi(∆′) = ∆, we have

noi(∆′
[
xk 7→ e′k

]
) = ∆ [xk 7→ ek] and, thus, the claim for Θ follows by in-

duction hypothesis.
And if f ∈ N it holds that noi(e′) = f(xn, x) implies e′ = f(i, xn, x) for some
variable i ∈ VarID and we have

Γ′ : x ⇓6 ∆′ : c(ym) ∆′
[
zk 7→ e′k

]
: e′ ⇓6 Θ′ : v

Γ′ : f(i, xn, x) ⇓6 Θ′ : v

analogue to the case above. �

According to the idea described in Section 5.1.2, the approach depends on
the identifiers being unique. The next definition formalizes the required notion
of uniqueness. The definition is followed by a proof that evaluations in the
context of our approach to program transformation meet this requirement.

Definition 5.2.9 We say that i ∈ VarID is a call-identifier in the heap Γ iff
there is an x ∈ dom(Γ) such that Γ(x) = f(i, xn) where f ∈ N .

A heap Γ uniquely identifies (calls to non-deterministic operations) iff for
all call identifiers i 6= j in Γ we have i ‖ j. We say that a configuration Γ : e
uniquely identifies iff Γ does and if e is of the form f(i, xn), f ∈ N then i is
independent from all call identifiers in Γ.

Lemma 5.2.10 It holds that if Γ : e uniquely identifies then so does any con-
figuration in Γ : e ⇓6 ∆ : v.

5.2. FORMAL DEFINITION OF TRANSFORMATION 103

Proof. (Of Lemma 5.2.10) By induction on the structure of the proof tree.
Base cases:
(Val): We have that in this case the claim holds trivially.
Inductive cases:
(Var): The induction hypothesis in this case is that if Γ : e uniquely identifies
then so does any configuration in Γ : e ⇓6 ∆ : v. With this assumption we have
to show that if Γ [x 7→ e] : x uniquely identifies then so does any configuration
in Γ [x 7→ e] : x ⇓6 ∆ [x 7→ v] : v. This claim holds because if Γ [x 7→ e] uniquely
identifies then so does Γ : e and if ∆ uniquely identifies then so does ∆ [x 7→ e]
as v cannot be of the form f(i, xn) where f ∈ N .
(Or): The induction hypothesis in this case is that if Γ : xi uniquely identifies
then so does any configuration in Γ : xi ⇓6 ∆ : v where i ∈ {1, 2}. With this
assumption we have to show that if Γ : x1 ? x2 uniquely identifies then so does
any configuration in Γ : x1 ? x2 ⇓6 ∆ : v which directly stems from the induction
hypothesis.
(Match): The induction hypothesis in this case is that if Γ : x uniquely identifies
then so does any configuration in Γ : x ⇓6 ∆ : c(ym) and if ∆ [zk 7→ ek] : e
uniquely identifies then so does any configuration in ∆ [zk 7→ ek] : e ⇓6 Θ : v
where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′). With this
assumption we have to show that if Γ : f(xn, x) uniquely identifies then so
does any configuration in Γ : f(xn, x) ⇓6 Θ : v. This claim holds because if
Γ : f(xn, x) uniquely identifies then so does Γ : x and if ∆ uniquely identifies
then so does ∆ [zk 7→ ek] : e by Proposition 5.2.5. Therefore, the claim directly
stems from the induction hypothesis. �

5.2.1 Head Normal Forms and Transformation of Goals

In Section 5.1.2 we have seen that the transformed program yields terms of the
form Choice 1 (Choice 1 True False) (Choice 1 False True) where the only
valid solution is True (computed in two different ways). In order to extract
the correct values from such a term we need some representation of a mapping
from identifiers to the set {1, 2} which is computable within the calculus. It
is well known that such representations can be expressed in functional logic
programming.4 We will simply assume the existence of a suitable operation
lookup(·, ·) which has two arguments: a) an identifier i ∈ ID and b) a subset
of ID × {1, 2} which represents a function f : ID 7→ {1, 2} and computes the
result of f(i). For example lookup(1, {(1, 2)}) should yield 2. In the following
we will completely abstract from the implementation of lookup(·, ·) and assume
in our derivations that any call to this operations is immediately replaced by
the according result.

Assuming such an operation lookup(·, ·) we can now define a function to
abstract the admissible values from a given tree of choices.

Definition 5.2.11 (Head Normal Form)
Let Σ be a signature such that CΣ = {cm} with ck ∈ Σ(nk) for 1 ≤ k ≤ m. Then

4A naive implementation could use lists of pair along with the Prelude function lookup.

104 CHAPTER 5. ELIMINATING NON-DETERMINISM

function hnf is defined by the following set of rules.

hnf(ch,Choice(i, x1, x2)) = hnfLup(ch, x1, x2, lookup(i, ch))
hnf(ch, c1(xn1)) = c1(xn1)

...
hnf(ch, cm(xnm

)) = cm(xnm
)

hnfLup(ch, x1, x2, 1) = hnf(ch, x1)
hnfLup(ch, x1, x2, 2) = hnf(ch, x2)

Example 5.2.12 (Head Normal Form)
For the example result of Section 5.1.2, we have for, e.g., ch = {(1, 2)}:

hnf(ch,Choice(1,Choice(1, T, F),Choice(1, F, T)))
= hnfLup(ch,Choice(1, T, F),Choice(1, F, T), lookup(1, ch))
= hnfLup(ch,Choice(1, T, F),Choice(1, F, T), 2)
= hnf(ch,Choice(1, F, T))
= hnfLup(ch, F, T, lookup(1, ch))
= hnfLup(ch, F, T, 2)
= hnf(ch, T)
= T

Likewise the evaluation ch = {(1, 1)} will also yield T , as the reader might want
to verify. Accordingly, there is no way to extract the value F from this term as
discussed in Section 5.1.2.

Providing a set as argument to hnf is our way of abstracting from the search
strategy. In Section 6.2 we will discuss how our approach can be connected to
different search strategies. Until then we will refer to ch as s set of choices and
assume that it provides a choice for any identifier coming up during evaluation.

The astute reader might wonder why we restrict ourselves to head normal
forms only, and not complete normal forms. A simple answer is that the calculi
considered in this work yield head normal forms only. But this is only beg-
ging the question. The deeper reason is that complete normal forms do not
bring any conceptually new insight, cf. the discussion by Hanus and Prehofer
[1999]. If we would like to compute the normal form of e.g., a Peano number,
cf. Example 1.1.14, we could define:

nf Z = Z

nf (S x) = nf_S (nf x)

nf_S Z = S Z

nf_S (S x) = S (S x)

It is easy to see that the effect of evaluating nf(e) for an expression e is that in
order to yield a head normal form of this expression the complete normal form
of e has to be evaluated.

There is a simple way of generalizing this scheme to arbitrary normal forms,
even simpler when higher order operations can be used.

Having defined hnf, the final step of our transformation is to translate the
goals given by the user, e.g., as the body of a function goal or on an interactive
command line environment. For any set of choices ch the start expression for

5.3. PROOF OF SOUNDNESS 105

(Val) Γ : c(xn) ⇓7 Γ : c(xn)

(Var)
Γ : e ⇓7 ∆ : v

Γ [x 7→ e] : x ⇓7 ∆ [x 7→ v] : v

(Match)
Γ : x ⇓7 ∆ : c(ym) ∆ [zk 7→ ek] : e ⇓7 Θ : v

Γ : f(xn, x) ⇓7 Θ : v
where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′)

Figure 5.1: Semantics without Nondeterminism

a given goal e is then hnf(ch, tr(initID, e)). In the next section we will prove
that in this way we can indeed compute exactly the set of all values computable
with the calculus of the previous chapter.

5.3 Proof of Soundness

Figure 5.1 shows the most condensed version of a natural semantics of this
work. It is a simple first order functional calculus. In this section we show that
this calculus can be used to compute the same results as the non-deterministic
calculus of Figure 4.4, provided the program is transformed as defined above.
Hence we turn to the formal comparison of evaluations in the context of a
program with identifiers P and a version of this program in which a call to (?)
introduces the constructor Choice. In Section 5.3.1 we will show that derivations
with the Choice constructor and hnf corresponds to an evaluation in the original
calculus. In Section 5.3.2 we will show the dual result that any derivation in
the original calculus employing non-deterministic choice can be reconstructed
without non-determinism by employing hnf. To conclude Section 5.4 contains
a summarizing theorem.

5.3.1 Correctness

In Example 5.2.12 we have seen that sets of choices are used to obtain values
from terms containing the Choice constructor. The next definition formalizes
this idea for expressions and heaps. As noted in Section 5.2.1 we will assume
that identifier variables are directly bound to identifiers during evaluation.

Definition 5.3.1 Let e ∈ FUEΣ be a flat uniform expression, Γ a flat uniform
heap and ch be a set of choices. Then the mapping chooseΓ,ch(e) is defined by:

chooseΓ,ch(e) =
{
xj if e = Choice(i, x1, x2) and (Γ(i), j) ∈ ch
e otherwise

When the heap is clear from the context we may omit it in choosech(e). This
holds especially when e appears in a heap or configuration, as for a heap Γ
choosech(Γ) is defined by

choosech(Γ) := {(x, chooseΓ,ch(e)) | (x, e) ∈ Γ}

106 CHAPTER 5. ELIMINATING NON-DETERMINISM

and for a configuration Γ : e choosech(Γ : e) is defined choosech(Γ : e) to be
equal to choosech(Γ) : chooseΓ,ch(e).

We say that a program P is a program with identifiers iff it is the result
of transforming some original program P0 by the transformation defined in the
previous section, i.e. iff we have P = tr(i, P0).

Let P be a program with identifiers. Then the program detQM (P) is P with
a redefinition of (?) to:

?(i, x, y) = Choice(i, x, y)

The proof of correctness takes several steps. We will first examine derivations
without the Choice constructor. Then study the behavior of a transformed
program in the presence of Choice and finally add the evaluation to head normal
form by hnf. Accordingly, our first lemma states that any “conventional value”,
i.e., a value rooted by any constructor but Choice derived in the ⇓7 -calculus
is also obtained in the original ⇓6 calculus.

Lemma 5.3.2 Let P ′ be a program with identifiers, let P = detQM (P ′) and let
v be a value not of the form Choice(x, y, z). Then we have that Γ : e ⇓7 ∆ : v
in P implies choosech(Γ : e) ⇓6 choosech(∆ : v) in P’ for any set of choices ch.

Proof. (Of Lemma 5.3.2) By induction on the structure of the proof tree.
Base cases:
(Val): We have Γ : c(xn) ⇓7 Γ : c(xn) in P implies choosech(Γ : c(xn)) ⇓6

choosech(Γ : c(xn)) in P’=choosech(Γ) : c(xn) ⇓6 choosech(Γ) : c(xn).
Inductive cases:
(Var): The induction hypothesis in this case is that Γ : e ⇓7 ∆ : v in P implies
choosech(Γ : e) ⇓6 choosech(∆ : v) in P’. With this assumption we have to
show that Γ [x 7→ e] : x ⇓7 ∆ [x 7→ v] : v in P implies choosech(Γ [x 7→ e] : x) ⇓6

choosech(∆ [x 7→ v] : v) in P’. This claim holds because we have

choosech(Γ : e) ⇓6 choosech(∆ : v)
= choosech(Γ) : choosech(e) ⇓6 choosech(∆) : v

choosech(Γ) [x 7→ choosech(e)] : x ⇓6 choosech(∆) [x 7→ v] : v
= choosech(Γ [x 7→ e] : x) ⇓6 choosech(∆ [x 7→ v] : v)

(Match): The induction hypothesis in this case is that Γ : x ⇓7 ∆ : c(ym) in
P implies choosech(Γ : x) ⇓6 choosech(∆ : c(ym)) in P’ and ∆ [zk 7→ ek] : e ⇓7

Θ : v in P implies choosech(∆ [zk 7→ ek] : e) ⇓6 choosech(Θ : v) in P’ where
f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′). With this assumption
we have to show that Γ : f(xn, x) ⇓7 Θ : v in P implies choosech(Γ : f(xn, x)) ⇓6

choosech(Θ : v) in P’. This claim holds because we have

choosech(Γ : f(xn, x))
= choosech(Γ) : f(xn, x) choosech(Γ : x) = choosech(Γ) : x
. . .
choosech(∆ : c(ym)) = choosech(∆) : c(ym) choosech(∆ [zk 7→ ek] : e) = choosech(∆)

[
zk 7→ choosech(ek)

]
: choosech(e)

. . .
choosech(Θ : v)

choosech(Θ : v)

5.3. PROOF OF SOUNDNESS 107

because c(ym) can not be of the form Choice(x, y, z) or otherwise we would also
have that v is also of that form by definition of the transformation tr(·, ·). �

The appearance of a Choice constructor on the control during derivation
can be interpreted as referring to two possible continuations which are at the
moment suspended. In this sense the next lemma states that resuming any of
the two suspended continuations leads to correct values.

Lemma 5.3.3 Let P be a program with identifiers and let ch be a set of choices
and Choice(j, x1, x2) be such that choosech(Choice(j, x1, x2)) = xi for i ∈
{1, 2}. Then Γ : e ⇓7 ∆′ : Choice(j, x1, x2) and choosech(∆′) : xj ⇓6 ∆ : v
imply choosech(Γ : e) ⇓6 ∆ : v where the first derivation is in the context of
program detQM (P), the latter in the context of P .

Note that in the following proof we omit P and detQM (P) since it should
be clear from the context which program is meant, respectively.
Proof. (Of Lemma 5.3.3) By induction on the structure of the proof tree.
Base cases:
(Val): We have Γ : c(xn) ⇓7 ∆′ : Choice(j, x1, x2) and choosech(∆′) : xj ⇓6 ∆ :
v imply choosech(Γ : c(xn)) ⇓6 ∆ : v because Γ : c(xn) must in this case be equal
to ∆′ : Choice(j, x1, x2) and, therefore, choosech(Γ : c(xn)) = choosech(∆′) :
xj .
Inductive cases:
(Var): The induction hypothesis in this case is that Γ : e ⇓7 ∆′ : Choice(j, x1, x2)
and choosech(∆′) : xj ⇓6 ∆ : v imply choosech(Γ : e) ⇓6 ∆ : v. With this as-
sumption we have to show that Γ [x 7→ e] : x ⇓7 ∆′ : Choice(j, x1, x2) and
choosech(∆′) : xj ⇓6 ∆ [x 7→ v] : v imply choosech(Γ [x 7→ e] : x) ⇓6 ∆ [x 7→ v] :
v. This claim holds because we have that Γ [x 7→ e] : x ⇓7 ∆′ : Choice(j, x1, x2)
implies Γ : e ⇓7 ∆′ : Choice(j, x1, x2) and therefore we can construct by as-
sumption:

choosech(Γ : e) ⇓6 ∆ : v
= choosech(Γ) : choosech(e) ⇓6 ∆ : v

choosech(Γ) [x 7→ choosech(e)] : x ⇓6 ∆ [x 7→ v] : v
= choosech(Γ [x 7→ e] : x) ⇓6 ∆ [x 7→ v] : v

(Match): The induction hypothesis in this case is that Γ : x ⇓7 ∆′ : Choice(j, x1, x2)
and choosech(∆′) : xj ⇓6 ∆ : c(ym) imply choosech(Γ : x) ⇓6 ∆ : c(ym) and
∆ [zk 7→ ek] : e ⇓7 Θ′ : Choice(j, x1, x2) and choosech(Θ′) : xj ⇓6 Θ : v imply
choosech(∆ [zk 7→ ek] : e) ⇓6 Θ : v where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e =
norm(e′). With this assumption we have to show that Γ : f(xn, x) ⇓7 Θ′ :
Choice(j, x1, x2) and choosech(Θ′) : xj ⇓6 Θ : v imply choosech(Γ : f(xn, x)) ⇓6

Θ : v. This claim holds because we have of the following case distinction:
Case 1, Γ : f(xn, x) ⇓7 Θ : v is of the form

Γ : x ⇓7 ∆ : c(ym) ∆ [zk 7→ ek] : e ⇓7 Θ : Choice(j, x1, x2)
Γ : f(xn, x) ⇓7 Θ : Choice(j, x1, x2)

108 CHAPTER 5. ELIMINATING NON-DETERMINISM

Then by Lemma 5.3.2 we have choosech(Γ : x) ⇓6 choosech(∆ : c(ym)) and,
therefore, we can construct by assumption:

choosech(Γ : f(xn, x))
= choosech(Γ) : f(xn, x) choosech(Γ : x) = choosech(Γ) : x
. . .
choosech(∆ : c(ym)) = choosech(∆) : c(ym) choosech(∆ [zk 7→ ek] : e) = choosech(∆)

[
zk 7→ choosech(ek)

]
: choosech(e)

. . .
Θ : v

Θ : v

Case 2, Γ : f(xn, x) ⇓7 Θ : v is of the form

⇓7

Γ : f(xn, x)

⇓7

 Γ : x
. . .
∆′ : Choice(j, x1, x2)

⇓7

[
∆′ [a1 7→ f(xn, x1)] [a2 7→ f(xn, x2)] : Choice(j, a1, a2)
∆′ [a1 7→ f(xn, x1)] [a2 7→ f(xn, x2)] : Choice(j, a1, a2)

∆′ [a1 7→ f(xn, x1)] [a2 7→ f(xn, x2)] : Choice(j, a1, a2)

We first note that choosech(Choice(j, x1, x2)) = xi implies

choosech(Choice(j, a1, a2)) = ai

Now we additionally assume existence of the derivation

choosech(∆′) [a1 7→ f(xn, x1)] [a2 7→ f(xn, x2)] : ai ⇓6 Θ : v

We take a closer look at the latter derivation.

⇓6

∆′ [a1 7→ f(xn, x1)] [a2 7→ f(xn, x2)] : ai

⇓6

∆′ [a3−i 7→ f(xn, x3−i)] : f(xn, xj)

⇓6

 ∆′ [a3−i 7→ f(xn, x3−i)] : xj

. . .
∆ [a3−i 7→ f(xn, x3−i)] : c(ym)

⇓6

 ∆ [a3−i 7→ f(xn, x3−i)] [xk 7→ ek] : e
. . .
Θ [a3−i 7→ f(xn, x3−i)] : v

Θ [a3−i 7→ f(xn, x3−i)] : v
Θ [a3−i 7→ f(xn, x3−i)] [ai 7→ v] : v

where f(xn, c(ym)) = e′ ∈ det(P) and norm(e’)=let {xk = ek} in e. The
binding of a3−i is not altered in the Derivation by Observation 2.2.4.3 since
a3−i is not reachable from xj . By Lemma 4.1.3 ∆′ [a3−i 7→ f(xn, x3−i)] : xj ⇓
∆ [a3−i 7→ f(xn, x3−i)] : c(ym) implies ∆′ : xj ⇓ ∆ : c(ym). And, therefore, we

5.3. PROOF OF SOUNDNESS 109

can construct as required:

⇓6

choosech(Γ) : f(xn, x)

⇓6

 choosech(Γ) : x
. . .
∆ : c(ym)

⇓6

 ∆ [xk 7→ ek] : e
. . .
Θ : v

Θ : v

�

We can now put the observations of Lemmas 5.3.2 and 5.3.3 together and
prove the desired fact about evaluation to head normal form. Recall that we
abstract from the implementation (and evaluation) of lookup.5

Lemma 5.3.4 Let P be a program with identifiers and let Γ be heap such that
Γ(xch) = ch. Then

Γ : hnf(xch , xe) ⇓7 ∆ : v

implies
choosech(Γ : xe) ⇓6 choosech(∆ : v)

where the first derivation is in the context of program detQM (P), the latter in
the context of P .

Note that in the following proof we again omit P and detQM (P) since it
should be clear from the context which program is meant, respectively.
Proof. By induction on the number c of calls to hnf in the whole derivation.
Base Case, c = 1:
In this case the derivation is, by definition of hnf, of the following form.

Γ : xe ⇓7 ∆ := ∆′ [xe 7→ v] : v ∆ : v ⇓7 ∆ : v
Γ : hnf(xch , xe) ⇓7 ∆ : v

Therefore, we get by Lemma 5.3.2 choosech(Γ : xe) ⇓6 choosech(∆ : v).
Inductive Case c⇒ c+ 1:
In this case the derivation is, by definition of hnf, of the following form.

⇓7

Γ : hnf(xch , xe)

⇓7

 Γ : xe

. . .
Θ := Θ′ [xe 7→ Choice(x1, x2, i)] : Choice(x1, x2, i)

D1

⇓7

Θ : hnfLup(xch, x1, x2, j)

⇓7

[
Θ : j
Θ : j

⇓7

 Θ : hnf(xch, xj)
. . .
∆ : v

D2

∆ : v
∆ : v

5A formal justification for this abstraction is given with Lemma 4.1.3.

110 CHAPTER 5. ELIMINATING NON-DETERMINISM

(Val) Γ : c(xn) ⇓8 Γ : c(xn) | ∅

(Var)
Γ : e ⇓8 ∆ : v | ch

Γ [x 7→ e] : x ⇓8 ∆ [x 7→ v] : v | ch

(Or)
Γ : ei ⇓8 ∆ : v | ch

Γ : ?(j, e1, e2) ⇓8 ∆ : v | {(j, i)} ∪ ch
where i ∈ {1, 2}

(Match)
Γ : x ⇓8 ∆ : c(ym) | ch ∆ [zk 7→ ek] : e ⇓8 Θ : v | ch ′

Γ : f(xn, x) ⇓8 Θ : v | ch ∪ ch ′

where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′)

Figure 5.2: Recording the choices made in a derivation

For the sub derivation D2 we conclude by induction hypothesis the existence
of the derivation choosech(Θ) : xj ⇓6 choosech(∆) : v. By Lemma 5.3.3
this derivation together with derivation D1 allows to conclude the existence
of choosech(Γ) : xe ⇓6 choosech(∆) : v. �

5.3.2 Completeness

Like in the completeness proof of Chapter 3, we will not directly map deriva-
tions in ⇓7 to those in ⇓6 . Rather, we also need an intermediate conservative
extension which provides information about derivations in ⇓6 . In this case
the information concerns the non-deterministic choices taken during evaluation.
Whenever we have an application of (Or) we need to record whether e1 or e2

was chosen like this:

(Or)
Γ : ei ⇓8 ∆ : v | ch

Γ : ?(j, e1, e2) ⇓8 ∆ : v | {(j, i)} ∪ ch
where i ∈ {1, 2}

Note that we use the identifier given as additional parameter to (?). Accord-
ingly we discard the rule

?(i, x, y) = x ? y

from the program and use the ternary ?(·, ·, ·) symbol directly as a primitive for
non-deterministic disjunction instead of ?(·, ·). The remaining rules of Figure 5.2
do not change this additional information with the exception of (Match) which
yields the union of the information of its sub computations. The complete
conservative extension is depicted in Figure 5.2. Altogether the rules compute
a set of choices along with the evaluation. This set of choices will then be used
as parameter for hnf.

The proof of completeness consists of two steps. We first show that the order
of evaluation of the last argument of a matching function can be altered in a
certain sense. This is important for resuming suspended computations.

5.3. PROOF OF SOUNDNESS 111

Lemma 5.3.5 For a matching function f the existence of the two derivations

Γ : hnf(xch , xe) ⇓7 ∆ : v′

and
∆ [xf 7→ f(xn, xe)] : hnf(xch , xf) ⇓7 Θ : v

implies the existence of the derivation

Γ [xf 7→ f(xn, xe)] : hnf(xch , xf) ⇓7 Θ : v.

Note that the latter two derivations differ in the heap of the in-configuration.
Proof. We assume the existence of the two derivations Γ : hnf(xch , xe) ⇓7 ∆ : v′

and ∆ [xf 7→ f(xn, xe)] : hnf(xch , xf) ⇓7 Θ : v and prove the claim by induction
on the number c of calls to hnf(·, ·) in the first of these derivations.
Base Case, c = 1:
In this case the derivations are, by definition of hnf, of the following forms,
respectively.

Γ′ : e ⇓7 ∆′ : c(ym)
Γ = Γ′ [xe 7→ e] : xe ⇓7 ∆ := ∆′ [xe 7→ c(ym)] : c(ym) ∆ : c(ym) ⇓7 ∆ : c(ym)

Γ : hnf(xch , xe) ⇓7 ∆ : c(ym)

and
∆ : xe ⇓7 ∆ : c(ym) ∆ [xk 7→ ek] : e ⇓7 Θ′′ : v′

∆ : f(xn, xe) ⇓7 Θ′′ : v′

∆ [xf 7→ f(xn, xe)] : xf ⇓7 Θ′ := Θ′′ [xf 7→ v′] : v′ Θ′ : e′ ⇓7 Θ : v
∆ [xf 7→ f(xn, xe)] : hnf(xch , xf) ⇓7 Θ : v

where f(xn, c(ym)) = e′ ∈ P and let {xk = ek} in e = norm(e′). Therefore, we
can construct the derivation

Γ : xe ⇓7 ∆ : c(ym) ∆ [xk 7→ ek] : e ⇓7 Θ′′ : v′

Γ : f(xn, xe) ⇓7 Θ′′ : v′

Γ [xf 7→ f(xn, xe)] : xf ⇓7 Θ′ := Θ′′ [xf 7→ v′] : v′ Θ′ : e′ ⇓7 Θ : v
Γ [xf 7→ f(xn, xe)] : hnf(xch , xf) ⇓7 Θ : v

(∗)

Inductive Case, c⇒ c+ 1:
We assume that the derivation Γ : hnf(xch , xe) ⇓7 ∆ : v′ contains c+ 1 calls to
the function hnf(·, ·) where c ≥ 1. The derivation must then, by definition of
hnf(·, ·), be of the following form.

⇓7

Γ : hnf(xch , xe)

⇓7

Γ = Γ′ [xe 7→ e] : xe

⇓7

 Γ′ : e
. . .
∆′′ : Choice(x1, x2, i)

∆′ := ∆′′ [xe 7→ Choice(x1, x2, i)] : Choice(x1, x2, i)

D1

⇓7

∆′ : hnfLup(xch, x1, x2, j)

⇓7

[
∆′ : j
∆′ : j

⇓7

 ∆′ : hnf(xch, xj)
. . .
∆ : c(ym)

D2

∆ : c(ym)
∆ : c(ym)

112 CHAPTER 5. ELIMINATING NON-DETERMINISM

Here, the sub derivation D2 contains c calls to hnf(·, ·). Therefore, the induction
hypothesis allows to conclude the existence of the derivation ∆′ [aj 7→ f(xn, xe)] :
hnf(xch , aj) ⇓7 Θ : v which is of the form (∗) constructed above.

With this we can construct

⇓7

Γ [xf 7→ f(xn, xe)] : hnf(xch , xf)

⇓7

Γ [xf 7→ f(xn, xe)] : xf

⇓7

Γ : f(xn, xe)

⇓7

 Γ : xe

. . .
∆′ : Choice(x1, x2, i)

D1

∆′ : Choice(x1, x2, i)

⇓7

[
∆′′ := ∆′ [a1 7→ f(xn, x1), a2 7→ f(xn, x2)] : Choice(a1, a2, i)
∆′′ : Choice(a1, a2, i)

∆ := ∆′′ [xf 7→ Choice(a1, a2, i)] : Choice(a1, a2, i)

⇓7

∆ : hnfLup(xch, a1, a2, j)

⇓7

[
∆ : j
∆ : j

⇓7

 ∆ : hnf(xch, aj)
. . .
Θ : v

def hnfLup, induction hypothesis

Θ : v
Θ : v

�

The last step of this section is the proof of completeness. Any derivation in
the calculus employing non-determinism can be reconstructed as a deterministic
derivation.

Lemma 5.3.6 It holds that for a program with identifiers P the existence of
the derivation

Γ : e ⇓8 ∆ : v | ch

implies that the derivation

Γ [xe 7→ e] [xch 7→ ch] : hnf(xch, xe) ⇓7 ∆ [xe 7→ v] [xch 7→ ch] : v

exists in detQM (P).

Again we omit to explicitly name the programs P and detQM (P) in the
proof.
Proof. (Of Lemma 5.3.6) By induction on the structure of the proof tree.
Base cases:
(Val): We have for Γ : c(xn) ⇓8 Γ : c(xn) | ∅:

⇓7

Γ [xch 7→ ∅] [xe 7→ c(xn)] : hnf(xch, xe)

⇓7

Γ [xch 7→ ∅] [xe 7→ c(xn)] : xe

⇓7

[
Γ [xch 7→ ∅] : c(xn)
Γ [xch 7→ ∅] : c(xn)

Γ [xch 7→ ∅] [xe 7→ c(xn)] : c(xn)
Γ [xch 7→ ∅] [xe 7→ c(xn)] : c(xn)

5.3. PROOF OF SOUNDNESS 113

Inductive cases:
(Var): The induction hypothesis in this case is that the existence of the deriva-
tion

Γ : e ⇓8 ∆ : v | ch

implies that the derivation

Γ [xe 7→ e] [xch 7→ ch] : hnf(xch, xe) ⇓7 ∆ [xe 7→ v] [xch 7→ ch] : v

exists. With this assumption we have to show that the existence of the derivation

Γ [x 7→ e] : x ⇓8 ∆ [x 7→ v] : v | ch

implies that the derivation

Γ [x 7→ e] [xe 7→ x] [xch 7→ ch] : hnf(xch, xe) ⇓7 ∆ [x 7→ v] [xe 7→ v] [xch 7→ ch] : v

exists. This claim holds because we have that from

⇓7

Γ [xch 7→ ch] [xe 7→ e] : hnf(xch, xe)

⇓7

Γ [xch 7→ ch] [xe 7→ e] : xe

⇓7

 Γ [xch 7→ ch] : e
. . .
∆ [xch 7→ ch] : v

∆ [xch 7→ ch] [xe 7→ v] : v
∆ [xch 7→ ch] [xe 7→ v] : v

we can construct

⇓7

Γ [x 7→ e] [xch 7→ ch] [xe 7→ x] : hnf(xch, xe)

⇓7

Γ [x 7→ e] [xch 7→ ch] [xe 7→ x] : xe

⇓7

Γ [x 7→ e] [xch 7→ ch] : x

⇓7

 Γ [xch 7→ ch] : e
. . .
∆ [xch 7→ ch] : v

∆ [x 7→ v] [xch 7→ ch] : v
∆ [x 7→ v] [xch 7→ ch] [xe 7→ v] : v

∆ [x 7→ v] [xch 7→ ch] [xe 7→ v] : v

(Or): The induction hypothesis in this case is that the existence of the derivation

Γ : ei ⇓8 ∆ : v | ch

implies that the derivation

Γ [xe 7→ ei] [xch 7→ ch] : hnf(xch, xe) ⇓7 ∆ [xe 7→ v] [xch 7→ ch] : v

exists where i ∈ {1, 2}. With this assumption we have to show that the existence
of the derivation

Γ : ?(j, e1, e2) ⇓8 ∆ : v | {(j, i)} ∪ ch

implies that the derivation

Γ [xe 7→ ?(j, e1, e2)] [xch 7→ {(j, i)} ∪ ch] : hnf(xch, xe) ⇓7 ∆ [xe 7→ v] [xch 7→ {(j, i)} ∪ ch] : v

114 CHAPTER 5. ELIMINATING NON-DETERMINISM

exists. This claim holds because we have that from

⇓7

Γ [xch 7→ ch] [xe 7→ ei] : hnf(xch, xe)

⇓7

Γ [xch 7→ ch] [xe 7→ ei] : xe

⇓7

 Γ [xch 7→ ch] : ei

. . .
∆ [xch 7→ ch] : v

∆ [xch 7→ ch] [xe 7→ v] : v
∆ [xch 7→ ch] [xe 7→ v] : v

we can construct

⇓7

Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ ?(j, e1, e2)] : hnf(xch, xe)

⇓7

Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ ?(j, e1, e2)] : xe

⇓7

Γ [xch 7→ {(j, i)} ∪ ch] : ?(j, e1, e2)

⇓7

[
Γ [xch 7→ {(j, i)} ∪ ch] : Choice(j, e1, e2)
Γ [xch 7→ {(j, i)} ∪ ch] : Choice(j, e1, e2)

∆ [xch 7→ {(j, i)} ∪ ch] : Choice(j, e1, e2)
Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ Choice(j, e1, e2)] : Choice(j, e1, e2)

⇓7

Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ Choice(j, e1, e2)] : hnfLup(xch, e1, e2, lookup(xch, j))

⇓7

[
Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ Choice(j, e1, e2)] : i
Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ Choice(j, e1, e2)] : i

⇓7

 Γ [xch 7→ {(j, i)} ∪ ch] [xe 7→ Choice(j, e1, e2)] : hnf(xch, ei)
. . .
∆ : v

∆ : v
∆ [xch 7→ {(j, i)} ∪ ch] [xe 7→ v] : v

(Match): The induction hypothesis in this case is that the existence of the
derivation

Γ : x ⇓8 ∆ : c(ym) | ch

implies that the derivation

Γ [xe 7→ x] [xch 7→ ch] : hnf(xch, xe) ⇓7 ∆ [xe 7→ c(ym)] [xch 7→ ch] : c(ym)

exists and the existence of the derivation

∆ [zk 7→ ek] : e ⇓8 Θ : v | ch ′

implies that the derivation

∆ [zk 7→ ek] [xe 7→ e]
[
xch 7→ ch ′

]
: hnf(xch, xe) ⇓7 Θ [xe 7→ v]

[
xch 7→ ch ′

]
: v

exists where f(xn, c(ym)) = e′ ∈ P and let {zk = ek} in e = norm(e′). With
this assumption we have to show that the existence of the derivation

Γ : f(xn, x) ⇓8 Θ : v | ch ∪ ch ′

implies that the derivation

Γ [xe 7→ f(xn, x)] [xch 7→ ch ∪ ch ′] : hnf(xch, xe) ⇓7 Θ [xe 7→ v] [xch 7→ ch ∪ ch ′] : v

exists by Lemma 5.3.5. �

5.4. SUMMARY 115

5.4 Summary

The following theorem summarizes the adequacy of the transformation from
functional logic to functional programs developed in this chapter.

Definition 5.4.1

[[e]]P7 := {c(Γ∗ch(xn)) | ∃ch : Γ0 : hnf(xch , xe) ⇓7 Γ : c(xn)}

where
let {xk = ek} in e′ = norm(e)
Γ0 := ∅ [xk 7→ ek, xe 7→ e′, xch 7→ ch]
Γ∗ch(x) := choosech(Γ)∗(x)

Theorem 3
[[e]]P3 = [[e]]dQM (P)

7

where
det(P) := tr(i, uf (P))
dQM (P) := detQM (detP)

Proof.

[[e]]P3
= [[e]]uf (P)

6 Theorem 2
⊆ [[e]]det(P)

6 Γ∗(x) = noi(Γ)∗(x) and Lem 5.2.7
⊆ [[e]]uf (P)

6 Γ∗(x) = noi(Γ)∗(x) and Lem 5.2.8
= [[e]]det(P)

8 extension from ⇓6 to ⇓8 is conservative
= {c(Γ∗(xn)) | ∅ [xk 7→ ek] : e′ ⇓8 Γ : c(xn) | ch in det(P)} Def 4.6.1
⊆ {c(Γ∗ch(xn)) | ∃ch : Γ0 : hnf(xch , xe) ⇓7 Γ : c(xn) in dQM (P)}Lem 5.3.6
= [[e]]dQM (P)

7 Def 5.4.1
⊆ {c(Γ∗ch(xn)) | ∃ch : Γ0 : e′ ⇓6 Γch : c(xn) in det(P)}

Def Γ0, Def 5.3.1, Prop 4.3.2, Lem 5.3.4
⊆ [[e]]det(P)

6 Def 4.6.1

where
let {xk = ek} in e′ = norm(e)
Γ0 := ∅ [xk 7→ ek, xe 7→ e′, xch 7→ ch]

�

This proof finishes the formal treatment of the transformation from func-
tional logic to purely functional programs. The remaining chapter of this work
is dedicated to the demonstration that the examined approach is practically rel-
evant. As we will see, our transformation yields programs which can be compiled
to machine code which is quite efficient when compared to existing compilation
systems for the functional logic programming language Curry.

116 CHAPTER 5. ELIMINATING NON-DETERMINISM

Chapter 6

Advanced Topics and
Benchmarks

In this chapter we will compare an implementation of our approach to existing
compilation systems for the functional logic language Curry [Hanus (ed)., 2006].
Along with testing system performance we will discuss how features available
in different systems can be integrated into the approach presented in this work.
Furthermore, the studied benchmarks will reveal opportunities for optimizations
both of the presented translation scheme and that of the related systems.

The compilation systems to be compared in this chapter are given in Fig-
ure 6.1. For comparing performance on purely functional programs in Sec-
tion 6.1 we will also take the Glasgow Haskell Compiler GHC1 into account.
Systems employing the GHC as part of the compilation process are tested with
and without full optimization, cf. Figure 6.1. The GHC system employed for
our approach and that of [Fischer et al., 2009, Braßel et al., 2010] was ver-
sion 6.12.1. All benchmarks have been taken on a computer with an Intel(R)
Core(TM)2 Duo CPU E8400 @ 3.00GHz and 4 GB of memory running Debian
Linux. A run-time measurement given as “×” means that the program could
not be fully executed in the available memory.

GHC Glasgow Haskell Compiler
ID Our approach employing identifiers
CM Curry Monad [Fischer et al., 2009, Braßel et al., 2010]
MCC The Münster Curry Compiler [Lux and Kuchen, 1999] in Version

0.9.10
PAKCS The Portland Aachen Kiel Curry System [Hanus et al., 2010] in

Version 1.9.2(9)
+ with optimization (-O2)
- without optimization (-O0)

Figure 6.1: The systems compared

In the following the reader should be aware that the presented code is Haskell
code added to the programs after transformation. In order to present the ac-
tual implementation, some details treated in an abstract way before need to

1http://www.haskell.org/ghc/

117

118 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

be defined more concretely in this chapter. In Section 5.1.2, for example, we
have introduced a constructor Choice :: ID → a → a → a in order to transform
non-deterministic programs to purely functional ones. We have noted that such
a constructor cannot be defined in Haskell. Instead we need to define a simple
type class.

class NonDet a where

choiceCons :: ID → a → a → a

This declaration allows us to:

• declare a different Choice constructor for each transformed Curry type and

• map the function choiceCons to that constructor in instance declarations,
allowing for a uniform interface for transformed programs.

Example 6.0.2 (Instances of Class NonDet)
Creating instances for class NonDet is straightforward. Consider the following
two type declarations in Curry.

data Bool = False | True

data List a = Nil | Cons a (List a)

The corresponding declarations in Haskell will be:

data Bool = False | True

| Choice_Bool ID Bool Bool

data List a = Nil | Cons a (List a)

| Choice_List ID (List a) (List a)

instance NonDet Bool where choiceCons = Choice_Bool

instance NonDet (List a) where choiceCons = Choice_List

Note that these definitions shadow Haskell definitions. Whenever we need to re-
fer to Haskell’s original definitions, we will use qualification, e.g., Prelude.True.

The implementation of different logic features examined in this chapter will
require a stepwise extension of class NonDet.

We will discuss different features of functional logic programs separately.
First we will talk about purely functional programs (Section 6.1) followed by
examining the implementation of search strategies (Section 6.2). In Section 6.3
we will extend the setting by representing finitely failing computations and Sec-
tion 6.4 we discuss the advantage of sharing across non-determinism which is a
feature of our approach. Section 6.5 gives a more elaborate discussion of recur-
sive let-bindings. Section 6.6 shows how our implementation can be extended to
feature state-of-the-art approaches to encapsulated search. Section 6.7 discusses
a way to reintroduce free variables, which are then extended for constraints
(Section 6.8). In Section 6.9 we will examine drawbacks of our approach with
regard to memory consumption. Finally, Section 6.10 discusses an approach to
debugging of declarative programs.

6.1. FUNCTIONAL PROGRAMS 119

6.1 Functional Programs

The translation scheme proposed in the given work is optimized towards a fast
execution of the functional parts of the programs. Therefore, measuring per-
formance on purely functional programs is an interesting topic. The programs
measured in this section are taken from the “no-fib”-benchmark suite for Haskell
programs [Partain, 1992].

6.1.1 First-Order Programs

The first program we consider is a simple recursive function given by the fol-
lowing definition. It employs sharing and will run many iterations for the calls
given in Figure 6.2.

tak :: Int → Int → Int → Int

tak x y z = if mynot(y < x) then z

else tak (tak (x-1) y z)

(tak (y-1) z x)

(tak (z-1) x y)

systems tak 24 16 8 tak 27 16 8 tak 33 17 8

GHC+ 0.01 0.04 1.02
ID- 0.12 0.41 11.05
ID+ 0.08 0.31 8.10
CM- 7.18 24.98 ×
CM+ 5.34 19.53 ×
MCC 0.42 1.54 40.36
PAKCS 11.30 40.50 1089.39

Figure 6.2: Benchmarks for first-order program tak

The results reveal mainly that the reimplementation of sharing necessary for
the approach CM is very costly while the translation of functional programs to
Prolog in PAKCS naturally shows the considerable overhead of interpretation.

6.1.2 Higher-Order Programs

We consider two higher-order programs in this section. The first is the compu-
tation of prime numbers by the well known sieve of Eratosthenes.

isdivs :: Int → Int → Bool

isdivs n x = mod x n /= 0

the_filter :: [Int] → [Int]

the_filter (n:ns) = filter (isdivs n) ns

primes :: [Int]

primes = map head (iterate the_filter (iterate (+1) 2))

The second program is a search problem and will serve for future reference for
benchmarking the logic extensions of Curry. The program computes the number
of solutions for the well known n queens problem.

120 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

queens nq = length (gen nq)

where

gen :: Int → [[Int]]

gen n = if n==0
then [[]]

else [(q:b) | b ← gen (n-1), q ← [1..nq], safe q 1 b]

safe :: Int → Int → [Int] → Bool

safe _ _ [] = True

safe x d (q:l) = x /= q && x /= q+d && x /= q-d && safe x (d+1) l

The results for computing the 12569th and 24001st prime number as well
as the number of solutions for posing queens on a board of size 10 and 12 are
given in Figure 6.3.2

systems primes !! 12569 primes !! 24001 queens 10 queens 12

GHC+ 2.98 18.06 0.02 0.72
ID- 138.95 577.88 0.94 33.57
ID+ 47.51 217.75 0.28 11.28
CM- × × 17.69 ×
CM+ × × 14.58 ×
MCC 13.71 55.40 0.62 22.80
PAKCS 695.19 × 14.02 502.06

Figure 6.3: Benchmarks for higher-order programs primes and queens

It is apparent that our approach does not perform as well as expected. What
is the reason for this slowdown? We come to the cause of the problem when
reconsidering the discussion of higher-order programs in Section 1.1.1.2, espe-
cially Example 1.1.8. There we have shown how higher-order programs can be
transformed to first-order programs by introduction of a function apply. The
important insight to understand the slowdown for higher-order programs is that
this function apply has to be treated as dependent on the operation (?). As apply
potentially calls any operation present in the program, it especially calls every
non-deterministic one. Therefore, apply and—in consequence—every higher-
order function has to be extended by a new argument and the operations leftID

and rightID have to be added everywhere to generate fresh identifiers. And al-
though we do not really use defunctionalization in our compilation scheme, the
conceptual necessity to add identifiers to all higher-order calls sticks. This ex-
plains the considerable overhead.

Example 6.1.1 (Transforming Higher-Order) Reconsider the definition of
map from Example 1.1.5.

map :: (a → b) → List a → List b

map f Nil = Nil

map f (Cons x xs) = Cons (apply f x) (map f xs)

For this operation we generate the following code.

2Note that for fairness of comparison we have used the standard definitions of functions
from the Curry Prelude instead of the one shipped with GHC.

6.1. FUNCTIONAL PROGRAMS 121

map :: NonDet b ⇒ Func a b → List a → ID → List b

map f Nil i = Nil

map f (Cons x xs) i =
let il = leftID i

ir = rightID i

in Cons (apply x1 x3 il) (map f xs ir)

map f (Choice_List j x y) i = Choice_List j (map f x i) (map f y i)

Here, the type Func a b is the extension of the type a → b to allow non-deterministic
choice as discussed at the beginning of this chapter.3

data Func a b = Func (a → ID → b)

| Func_Choice ID (Func a b) (Func a b)

The function apply is defined by:

apply :: NonDet b ⇒ Func a b → a → ID → b

apply (Func f) s x = f s x

apply (Func_Choice r f1 f2) s x =
choiceCons r (apply f1 s x) (apply f2 s x)

The use of higher-order operations is central for the declarative program-
ming paradigm. Therefore, an approach to improve the situation is important.
We make use of a simple observation to speed up higher-order computations.
The observation is that while higher-order features are often used in functional
logic programs the operations applied in a higher-order fashion are seldom non-
deterministic on the higher-order level. Therefore, it is well worth the additional
code to have two versions of any higher-order operation: one translated with
the scheme examined in the previous chapter and the other assuming that all
higher-order arguments are evaluate to a function object deterministically.

Example 6.1.2 For the definition of map (cf. Example 6.1.1 above) we generate
an additional version (with a prefix d_ for deterministic) as follows.

d_map :: (a → b) → List a → List b

d_map f Nil = Nil

d_map f (Cons x xs) = Cons (d_apply f x) (d_map f xs)

d_map f (Choice_List i x y) = Choice_List i (d_map f x) (d_map f y)

Here, the function d_apply is simply defined as:

d_apply :: (a → b) → a → b

d_apply f x = f x

Note that the arguments of a partial application may still be non-deterministic.
For example, the call “map (+coin) [1,2,3]” can be translated using d_map.
Only the much rarer case that the evaluation to the function itself is non-
deterministic has to introduce the overhead. For example, the translation of
“map ((+0) ? (+1))” has to employ map as defined in Example 6.1.1. In our
experience the latter use of higher-order together with non-determinism is very
rare in Curry programs. Therefore, in most cases the code duplication is imme-
diately remedied by the elimination of dead code done during optimization.

3As a side note it is more convenient for the higher-order translation to add identifiers as
a last argument rather than as first.

122 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

A simple analysis of the arguments of a given function call can give a useful
approximation when it is safe to use the deterministic version of a higher-order
operation. With this optimization the results for the examples of this section
improve considerably as shown in Figure 6.4 where IDHO is short for our approach
employing the described improvement.

systems primes !! 12569 primes !! 24001 queens 10 queens 12

GHC+ 2.98 18.06 0.02 0.72
ID- 138.95 577.88 0.94 33.57
ID+ 47.51 217.75 0.28 11.28
IDHO- 8.81 44.51 0.17 7.52
IDHO+ 3.94 25.78 0.12 5.24
CM- × × 17.69 ×
CM+ × × 14.58 ×
MCC 13.71 55.40 0.62 22.80
PAKCS 695.19 × 14.02 502.06

Figure 6.4: Benchmarks for improved higher-order program primes Queens

We feel that the improvements are so encouraging that in the remainder of
this chapter we will always measure run times for the programs improved for
higher-order computation.

6.2 Collecting Sets of Choices

In the previous chapter we have thoroughly examined the evaluation of trans-
formed programs assuming a given set of choices. But where does such a set
of choices come from? Normally, a computation will not be provided with a
complete set of choices up front but will rather construct such a set during the
course of evaluation. The method of constructing sets of choices will in the
following be referred to as a search operation. In this section we develop con-
crete implementations of three well known search strategies, namely depth-first,
breadth-first, and iterative depth-first search. In addition we will examine a
parallel search strategy based on concurrency features of the GHC.

The operation hnf(·, ·) (cf. Section 5.2.1) can be seen as a first rudimentary
search operation. Recall that this operation was provided with some means
to look up information corresponding to identifiers. This information was used
whenever the evaluation to head normal form encountered a Choice-constructor.
The impact of the information was to continue the evaluation either with the left
or the right sub expression of the Choice-constructor. For technical simplicity,
in the previous chapter we were content with encoding the information as the
numbers 1 and 2, respectively. In this chapter we will make full use of Haskell
and encode the information as the following enumeration type.

data Choice = ChooseLeft | ChooseRight | NoChoice

In order to preserve the soundness results obtained in the previous chap-
ter, any search operation must behave towards ChooseLeft and ChooseRight as
hnf(·, ·) does towards 1 and 2, respectively. The last alternative NoChoice, how-
ever, marks the extension of hnf(·, ·) to a full search operation. Whenever no

6.2. COLLECTING SETS OF CHOICES 123

information corresponding to the encountered identifier is available, the search
operation will make a new choice and manage the selection of the current set of
choices.

As we have remarked in the previous chapter, different implementations of
the type ID of identifiers are possible. Our first approach implements identifiers
as memory cells (of the Haskell type IORef). This choice is lead by considerations
with regard to efficiency both where time and memory are concerned.

newtype ID = ID (IORef Choice)

With this definition the current “set of choices” is simply the set of values con-
tained in the memory cells allocated for identifiers. We provide two operations
to manage the information about a set of choices.

lookupChoice :: ID → IO Choice

lookupChoice (ID ref) = readIORef ref

setChoice :: ID → Choice → IO ()

setChoice (ID ref) c = writeIORef ref c

The type class NonDet was introduced at the beginning of this chapter to obtain
a uniform interface to construct non-deterministic choices. We will now extend
this type class to uniformly allow deconstruction. For this we encode the infor-
mation whether a given value is a non-deterministic choice or a deterministic
value (in head normal form4) by the Haskell data type Try.

data Try a = Val a | Choice ID a a

class NonDet a where

...

try :: a → Try a

Generating instances for the extension of class NonDet is straightforward.

Example 6.2.1 (Implementation of try) Reconsider the definitions of Ex-
ample 6.0.2. The declarations for the functions try can be given as:

instance NonDet Bool where

...

try (Choice_Bool i x y) = Choice i x y

try x = Val x

instance NonDet (List a) where

...

try (Choice_List i x y) = Choice i x y

try x = Val x

To give a first impression how the operations on identifiers and try work
together, we consider how to print all values of a given expression according to
depth-first search.

Example 6.2.2 (Printing Values, Depth First)

4We have discussed in Section 5.2.1 how complete normal forms can be computed by
employing evaluation to head normal form.

124 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

printValsDFS :: (Show a,NonDet a) ⇒ Try a → IO ()

printValsDFS (Val v) = print v

printValsDFS (Choice i x1 x2) = lookupChoice i >>= choose

where

choose ChooseLeft = printValsDFS (try x1)

choose ChooseRight = printValsDFS (try x2)

choose NoChoice = do newChoice ChooseLeft x1

newChoice ChooseRight x2

newChoice j x = do setChoice i j

printValsDFS (try x)

setChoice i NoChoice

When no choice has yet been made for identifier i (i.e., the result of calling
(lookupChoice i) is NoChoice), the operation printValsDFS will first follow the
left (x1) and then the right sub expression (x2) of the Choice-constructor. Note
that in this case the choice has to be reset to NoChoice after each recursive call
to printValsDFS.

With regard to applications it will not be enough to simply print all values
of a search. Rather we would like to obtain each value in an on-demand fashion.
For this it is convenient to define a new list structure which is able to yield
monadic values on demand.

data MList m a = MCons a (m (MList m a)) | MNil

As usual such a list is either empty (MNil) or contains a value of type a along
with the remaining list (MCons). The remaining list, however, is an argument
of the higher-kind type parameter m. For example, a non-empty list of type
MList IO Int will contain a number and an IO-action to yield a new (possibly
empty) list.

We only give the type signature of the according operations on monadic lists
as the implementation is simple.

mnil :: Monad m ⇒ m (MList m a)

mcons :: Monad m ⇒ a → m (MList m a) → m (MList m a)

(+++) :: Monad m ⇒ m (MList m a) → m (MList m a) → m (MList m a)

(|<) :: Monad m ⇒ m (MList m a) → m () → m (MList m a)

As the reader might expect, mnil and mcons are used to construct empty and
non-empty monadic lists, respectively, while (+++) concatenates two given
monadic lists. Operation |< adds a monadic action of type m () to the end of
the list. The search operations will yield lists in the IO monad such that the
following abbreviation will be handy.

type IOList a = MList IO a

Example 6.2.3 (Printing Values of Monadic Lists) Printing all values in
a monadic list can be defined as

printVals :: Show a ⇒ IOList a → IO ()

printVals MNil = return ()

printVals (MCons x getRest) = print x >> getRest >>= printVals

6.2. COLLECTING SETS OF CHOICES 125

We will consider the implementation of different search strategies in separate
sub sections. Firstly, we will look at the programs used for benchmarking,
which are simple variants of Examples 1.1.12 and 1.1.18. The difference for both
programs is that the evaluation of insert does not produce failing computations
as these will not be introduced before the next section.

Example 6.2.4 (Permutations With and Without Sharing)
Definition of insert for program perm:

insert x [] = [x]

insert x (y:ys) = x:y:ys

insert x (y:ys) = y : insert x ys

Definition of insert for program permSh:

insert x [] = [x]

insert x (y:ys) = x:y:ys ? y : insert x ys

The definition of permute is for both programs:

permute [] = []

permute (x:xs) = insert x (permute xs)

The difference between the programs permSh and perm seems negligible: the first
calls operation (?) where the other employs two separate rules to express the
non-deterministic choice. Semantically, both definitions can be easily seen to be
equivalent. In our approach both are transformed in exactly the same way since
we treat (?) as the primitive for non-deterministic choice. We will see, however,
that drastic differences ensue for the run-times of the two versions in most of the
other approaches. The reason for these effects is that the definition of insert by
(?) seems to make a sharing for x, y and xs necessary where the definition by two
separate rules makes the fact obvious that no sharing is needed. For the present
examination the results should support the claim that reusing the sharing of the
host language can be profitable for efficiency. In addition, the examples seem to
suggest that even the simplest of sharing analysis could drastically improve the
run times of some of the related approaches.

6.2.1 Depth-First Search

With the representation of monadic lists it is straightforward to define a search
operation employing depth-first search.

searchDFS :: NonDet a ⇒ Try a → IO (IOList a)

searchDFS (Val v) = mcons v mnil

searchDFS (Choice i x1 x2) = lookupChoice i >>= choose

where

choose ChooseLeft = searchDFS (try x1)

choose ChooseRight = searchDFS (try x2)

choose NoChoice = newChoice ChooseLeft x1 +++
newChoice ChooseRight x2

newChoice c x = do setChoice i c

searchDFS (try x) |< setChoice i NoChoice

126 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

Figure 6.5 shows the result of benchmarking permutations employing depth-
first search.5

systems perm [1..9] perm [1..10] permSh [1..9] permSh [1..10]

IDHO- 0.60 6.61 0.60 6.61
IDHO+ 0.21 2.44 0.21 2.44
CM- 0.93 9.50 15.20 189.37
CM+ 0.77 7.75 18.52 230.28
MCC 0.44 4.56 0.44 4.63
PAKCS 6.07 61.19 7.36 78.17

Figure 6.5: Benchmarks for depth-first search

6.2.2 Breadth-First Search

The PAKCS system does not allow to influence the search strategy and relies
on depth-first search as provided by the Prolog host language. In our approach
breadth-first search can be defined as follows.

searchBFS :: NonDet a ⇒ Try a → IO (IOList a)

searchBFS x = bfs [] [] (return ()) (return ()) x

where

bfs xs ys _ reset (Val v) = reset >> mcons v (next xs ys)

bfs xs ys set reset (Choice i x y) = set >> lookupChoice i >>= choose

where

choose ChooseLeft = bfs xs ys (return ()) reset (try x)

choose ChooseRight = bfs xs ys (return ()) reset (try y)

choose NoChoice = do

reset

next xs ((newSet ChooseLeft , newReset, x) :

(newSet ChooseRight, newReset, y) : ys)

newSet c = set >> setChoice i c

newReset = reset >> setChoice i NoChoice

next [] [] = mnil

next [] ((set,reset,y):ys) = bfs ys [] set reset (try y)

next ((set,reset,x):xs) ys = bfs xs ys set reset (try x)

Note that the strategy needs to ensure that all IORefs are set before looking
up a value and that the memory cells are reset whenever a change of context
occurs.

Figure 6.6 shows the result of benchmarking permutations employing breadth-
first search. For CM we have used the level monad6 and for MCC we used the
primitive try to implement breadth-first search analogously as follows:

5For CM we have used a monad based on functional lists. In PAKCS and MCC we
used the primitive findall to measure the time for pure depth-first search without failing
computations, e.g.:
dfsSearch = findall goal0

goal0 x = x=:=perm [1 .. 9]

6available under http://hackage.haskell.org/package/level-monad

6.2. COLLECTING SETS OF CHOICES 127

bfsSearch :: [a → Success] → [a]

bfsSearch = bfs [] []

where

bfs xs ys [] = next xs ys

bfs xs ys [v] = unpack v : next xs ys

bfs xs ys (x:y:zs) = next xs (x:y:zs ++ ys)

next [] [] = []

next [] (y:ys) = bfs ys [] (try y)

next (x:xs) ys = bfs xs ys (try x)

systems perm [1..9] perm [1..10] permSh [1..9] permSh [1..10]

IDHO- 1.17 18.18 1.17 18.18
IDHO+ 0.45 7.38 0.45 7.38
CM- 0.93 10.08 14.36 176.15
CM+ 0.76 7.45 14.87 189.77
MCC 0.69 10.41 0.73 11.58

Figure 6.6: Benchmarks for breadth-first search

6.2.3 Iterative Depth-First Search

Iterative depth-first search (IDFS) is the idea to explore the search space in
a depth-first manner but only up to a given bound. This bound is increased
step-wise until no more solutions are to be found (which is not always known,
naturally). The strategy combines the good memory behavior of depth-first
search with the completeness of breadth-first search while having a proportional
impact on run-time, only. We mainly include the examination of this strategy
here because it could not be implemented correctly with our former approach
[Braßel and Huch, 2009].

For IDFS we still want to compute lists of values. During evaluation, how-
ever, we need to distinguish the case that a list ended because there were no
more values to be found or because we have hit the depth boundary. For this
purpose we define a list with two different constructors for an empty list.

data DoubleNil a = a :< DoubleNil a | Abort | NoMore

The concatenation of two double-nil lists (++<) has to mind that Abort needs
to have precedence over NoMore.

(++<) :: DoubleNil a → DoubleNil a → DoubleNil a

Abort ++< NoMore = Abort

(x :< xs) ++< ys = x :< (xs ++< ys)

nil ++< ys = ys

We extend double-nil lists to a monad minding that finding a single value via
return means that there are no more values to be found.

instance Monad DoubleNil where

return x = x :< NoMore

Abort >>= _ = Abort

NoMore >>= _ = NoMore

(x :< xs) >>= g = g x ++< (xs >>= g)

128 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

A run of iterative depth-first search maps a given boundary to a double-nil list.
We declare instances of this definition for the classes Monad and MonadPlus.

newtype IterDFS a = IterDFS (Int → DoubleNil a)

instance Monad IterDFS where

return x = IterDFS (λ n → if n<stepIDFS then return x else NoMore)

IterDFS f >>= g = IterDFS (λ n → join $ do

x ← f n

let IterDFS g’ = g x

return (g’ n))

instance MonadPlus IterDFS where

mzero = IterDFS (λ _ → NoMore)

IterDFS f ‘mplus‘ IterDFS g =
IterDFS (λ n → if n>0

then let n’=n-1 in f n’ ++< g n’

else Abort)

Finally, the iteration is controlled by:

runIterDFS :: IterDFS a → [a]

runIterDFS (IterDFS f) = collect 0 (f 0)

where

collect n NoMore = []

collect n Abort = let n’=n+stepIDFS in collect n’ (f n’)

collect n (x :< xs) = x : collect n xs

The constant stepIDFS is considered to be a global parameter for the search
strategy. For our benchmarks we have used stepIDFS=10.

The definitions given above are used to benchmark the CM system. The
code for MCC and our approach transfers the same basic idea to use the try

primitive and an adaption of monadic lists, respectively.
Figure 6.7 shows the result of benchmarking permutations employing itera-

tive depth-first search.

systems perm [1..9] perm [1..10] permSh [1..9] permSh [1..10]

IDHO- 1.05 15.31 1.05 15.31
IDHO+ 0.25 5.36 0.25 5.36
CM- 1.46 15.51 16.96 ×
CM+ 1.14 12.30 × ×
MCC 1.92 23.53 2.09 24.32

Figure 6.7: Benchmarks for iterative depth-first search

6.2.4 Parallel Search

In conjunction with the CM system a monad based on search trees7 has been
developed on which a parallel search employing GHC concurrency is defined.8

7Available at http://hackage.haskell.org/package/tree-monad
8Available at http://hackage.haskell.org/package/parallel-tree-search

6.3. FAILING COMPUTATIONS 129

The idea to use IORefs to model sets of choices cannot be used for the
concurrent case as different threads might need to access the same identifier
at the same time. Using thread-safe memory cells like MVars would inhibit
the parallelism since every thread would need to lock all variables it depends
on. Therefore, every thread needs its own set of choices and we introduce a
representation without side effects. For this we use integers as identifiers and
search trees to store information about choices.

type ID = Integer

type SetOfChoices = Map ID Choice

In analogy to the monadic actions defined above for IORefs, we define the fol-
lowing operations to manage sets of choices:

lookupChoice’ :: SetOfChoices → ID → Choice

lookupChoice’ set i =
maybe NoChoice id (Data.Map.lookup i set)

setChoice’ :: SetOfChoices → ID → Choice → SetOfChoice

setChoice’ set i c = Data.Map.insert i c set

Using these operations the following code lifts the values produced by our ap-
proach to any monad conforming to the MonadPlus protocol. We will make good
use of the abstraction of this definition later on in Section 6.6.

searchMPlus :: (NonDet a, MonadPlus m) ⇒ SetOfChoices → Try a → m a

searchMPlus _ (Val v) = return v

searchMPlus set (Choice i x y) = choose (lookupChoice’ set i)

where

choose ChooseLeft = searchMPlus set (try x)

choose ChooseRight = searchMPlus set (try y)

choose NoChoice = searchMPlus (pick ChooseLeft) (try x)

‘mplus‘ searchMPlus (pick ChooseRight) (try y)

pick = setChoice’ set i

Parallel search can be employed in our approach and the CM system only.
Figure 6.8 shows the result of benchmarking permutations employing parallel
search.

systems perm [1..9] perm [1..10] permSh [1..9] permSh [1..10]

IDHO- 0.38 4.28 0.38 4.28
IDHO+ 0.36 3.98 0.36 3.98
CM- 0.99 10.14 14.73 182.47
CM+ 0.77 8.01 14.18 176.49

Figure 6.8: Benchmarks for parallel search

6.3 Failing Computations

Non-determinism is only one means to model search in (functional-)logic pro-
grams. Another one is (finite) failure. Unlike in functional programs, where

130 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

failing computations are considered programming errors, a functional logic pro-
grammer uses incomplete patterns or guards to restrict search. For example, the
sort function introduced in Example 1.1.18 uses a guard that fails for unsorted
lists in order to constrain the set of results to sorted permutations of the input.

In order to model failing computations, we introduce an additional spe-
cial constructor Fail—both to each transformed data declaration and to class
NonDet.

class NonDet a where

...

failCons :: a

Example 6.3.1 (Adding Failure to Data Declarations)
Reconsider the definitions of Example 6.0.2. The declarations are extended for
representing failure as:

data Bool = False | True

| Choice_Bool ID Bool Bool

| Fail_Bool

data List a = Nil | Cons a (List a)

| Choice_List ID (List a) (List a)

| Fail_List

instance NonDet Bool where

...

failCons = Fail_Bool

instance NonDet (List a) where

...

failCons = Fail_List

Similar to the special rules for Choice, every pattern matching needs to be
extended with a rule for Failure. For example, consider the transformed version
of sort from Example 4.2.19:

sort :: ID → List Int → List Int

sort i l = guard (sorted p) p where p = permute i l

guard :: NonDet a ⇒ Bool → a → a

guard True z = z

guard (Choice_Bool i x y) z = choiceCons i (guard x z) (guard y z)

guard _ _ = failCons

sorted :: List Int → Bool

sorted Nil = True

sorted (Cons m xs) = sorted2 m xs

sorted (Choice_List i x y) = choiceCons i (sorted x) (sorted y)

sorted _ = failCons

sorted2 :: Int → List Int → Bool

sorted2 m Nil = True

9We omit the definitions of (≤) and (&&).

6.3. FAILING COMPUTATIONS 131

sorted2 m (Cons n ns) = m ≤ n && sorted (Cons n ns)

sorted2 m (Choice_List i x y) = choiceCons i (sorted2 m x) (sorted2 m y)

sorted2 _ _ = failCons

We introduce a function guard to express guards in functional logic programs.
This function returns its second argument if the first argument is True. Ad-
ditionally, we add a default case for all patterns that have not been matched
to every function to return consFail in case of a pattern match error and to
propagate such errors. In order to extend our implementation of failures to in-
clude more informative error messages like, e.g., proposed by Hanus [2007a], one
would a) add arguments to the constructors representing failure and b) change
the new rules to attach such information.

For the benchmarks we use the program for permutation sort as given in
Example 1.1.18. In addition we examine the following variant of permutation
sort where the result of permute is not shared and the function sorted yields its
argument if it is sorted and fails otherwise. As we will see, this variant has a
considerable effect on the run-times which behaves differently in the examined
systems.

Example 6.3.2 (Variant of Permutation Sort)

sort’ :: [Int] → [Int]

sort’ l = sorted (permute l)

sorted :: [Int] → [Int]

sorted [] = []

sorted [x] = [x]

sorted (m:n:ns) | m ≤ n = m : sorted (n:ns)

Figure 6.9 shows the result of computing values for both variants of permu-
tation sort of the two expressions sort (2 : [15..1]) and sort (2 : [20..1]).

systems sort (2:[15..1]) sort (2:[20..1])

IDHO- 0.93 39.33
IDHO+ 0.48 20.34
CM- 2.02 82.79
CM+ 2.09 85.52
MCC 0.58 26.12
PAKCS 3.13 122.57

systems sort’ (2:[15..1]) sort’ (2:[20..1])

IDHO- 0.80 34.78
IDHO+ 0.37 16.39
CM- 1.57 61.62
CM+ 1.29 52.98
MCC 0.58 26.16
PAKCS 2.42 95.78

Figure 6.9: Benchmarks for computing with failures

132 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

As we see there is a considerable speedup for every system with the excep-
tion of the MCC, which proves able to produce nearly identical run-times for
both examples. Comparing the translation schemes for the two examples could
therefore bring additional insights in possible improvements.

6.4 Sharing Across Non-Determinism

Sharing across non-determinism is the ability of a given compilation system to
compute deterministic expressions at most once, regardless of the non-determi-
nistic choices involved. For example, we could expect that the time for evalu-
ating the expressions e1=primes !! 1000 and e2=let x=e1 in x ? x should be
roughly the same. (The cost to find the 1000th prime number makes the cost
to establish a single choice point negligible.) For all of the examined systems
with the exception of our approach, however, evaluating e2 takes double the
time of evaluating e1. This is because e1 is evaluated twice during the course of
evaluation in the other systems. As even comparably efficient functional logic
algorithms can induce a number of choices, the effect on the resulting run-times
can be considerable and hard to predict, especially in combination with laziness.

Example 6.4.1 (Sharing Across Non-Determinism) Reconsider the defi-
nitions from Sections 6.1.2 and 6.3. For these definitions we measured run times
for the following goals.

goal0 = [primes!!800, primes!!801, primes!!802, primes!!803]

goal1 = sort’ [6143, 6151, 6163, 6173]

goal2 = sort’ [primes!!800, primes!!801, primes!!802, primes!!803]

systems goal0 goal1 goal2

IDHO- 0.03 0.00 0.03
IDHO+ 0.02 0.00 0.02
CM- 13.13 0.00 121.28
CM+ 11.72 0.00 102.28
MCC 0.20 0.00 2.27
PAKCS 9.55 0.01 95.06

Figure 6.10: Benchmarks sharing across non-determinism

As the results in Figure 6.10 indicate any of the examined systems can sort a
list with four elements within milliseconds (goal1). If the same list is, how-
ever, given as an unevaluated expression (goal2) the evaluation takes consider-
ably longer than simply computing that list deterministically (goal0). For our
approach, however, the equation t(goal2) = t(goal0) + t(goal1) holds (with neg-
ligible deviation).

The consequence of Example 6.4.1 is that without this kind of sharing, program-
mers have to avoid using non-determinism for functions that might be applied to
expensive computations. But in connection with laziness a programmer cannot
know which arguments are already computed because evaluations are suspended
until their value is demanded. Hence, the connection of laziness with logic search
always threatens to perform with the considerable slowdown discussed above.

6.5. RECURSIVE LET BINDINGS 133

Thus, sadly, when looking for possibilities to improve efficiency, the programmer
in a lazy functional logic language is well advised to either try to eliminate the
logic features he might have employed or to strictly evaluate expressions prior
to each search. Both alternatives show that he still follows either the functional
or the logic paradigm but cannot profit from a seamless integration of both.
Therefore, sharing across non-determinism is a crucial ingredient when aiming
at the seamless integration of both paradigms of declarative programming.

How is sharing across non-determinism achieved in our approach? To un-
derstand the effect it should be enough to examine the evaluation of the two
expressions e1 and e2 from above in some detail.

Example 6.4.2 (Achieving Sharing Across Non-Determinism)
Our transformation produces the following Haskell code for e1 and e2.10

e1 :: C_Int

e1 = primes !! C_Int 1000

e2 :: ID → C_Int

e2 i = let x = e1 in (x ? x) i

Here C_Int is a wrapper we need to add choice and fail constructors to integers.

data C_Int = C_Int Integer

| Int_Choice ID C_Int C_Int

| Int_Fail

The evaluation of e2 can be sketched as follows, cf. Section 1.1.1.3.

e2 = let x = e1 in (x ? x) i

= let x = e1 in choiceCons i x x

= let x = e1 in Int_Choice i x x

...

= let x = 7927 in Int_Choice i x x

= Int_Choice i 7927 7927

Thus, the achievement of sharing across non-determinism is a direct conse-
quence of employing the sharing of the host language Haskell.

With regard to related work a different approach to formalize sharing de-
terministic computations across non-deterministic branches is called bubbling
[Antoy et al., 2006a]. Bubbling is defined as a graph rewriting technique and
the call-time choice semantics is realized by manipulating the graph globally.
We, in contrast, do only the local manipulation of lifting or-nodes and realize
call-time choice by storing branching information and comparing or-references
later on. Our approach definitely speeds up deterministic computations in com-
parison, putting the whole overhead on branching. Unfortunately, there is no
mature implementation of bubbling for us to compare with yet. We will come
back to a more detailed discussion of bubbling in Section 6.10.2.

6.5 Recursive let bindings

In Section 2.3.1 we have introduced and discussed a change of the semantics
with regard to [Albert et al., 2005]. As we have seen the change effects the

10We assume the optimization for higher-order programs discussed in Section 6.1.2.

134 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

semantics with regard to recursive let structures whose evaluation induces non-
determinism. In this section we will examine this issue deeper giving further
justification for our choice of semantics.

When restricting the discussion to functional languages, recursive let bind-
ings can be defined in terms of other language features. The defining law for
them is the following equation, which is used to introduce the meaning of re-
cursive let [Peyton Jones, 1987, p42]:

letrec {x = e} in e′ := let {x = fix(λx.e)} in e′

where fix f=f (fix f). In other words, recursive bindings can be eliminated by
introduction of recursive function definitions.11 Incidentally, the original version
of semantics from [Albert et al., 2005] is constructed such that this law also holds
in functional logic languages. Indeed, the evaluation of the expression let {x =
T ? case x of {T 7→ F}} in x as introduced in Section 2.3.1 behaves exactly
as if we had defined an operation x=T ? case x of {T 7→ F} in the program
and would simply evaluate the expression x(), i.e., a call to that operation. In
this view, the original version of the semantics seems preferable. (Even if, as
we have seen in the quote in Section 2.3.1, this was not the reason to define it
thus.) With our version of semantics, however, recursive let bindings cannot be
eliminated from the program without considering its semantics. They introduce
a new entity for which, as a side remark, a denotational semantics is hard to
be obtained. This point is illustrated by the following example adapted from
[Schmidt-Schauß et al., 2009].12

Example 6.5.1 (Recursive let is a New Entity) Consider the following op-
eration definitions.

False !> e = e

list1 xs = False : null xs !> [False]

list2 xs = null xs !> [False,True]

list3 xs = False : null xs !> [True]

nd1 xs = list1 xs ? list2 xs

nd2 xs = nd1 xs ? list3 xs

With regard to any possible input, the operations nd1 and nd2 behave the same,
namely, either yield False:⊥ when the argument xs diverges or fails or yield
[False,False] ? [False,True] when the argument xs evaluates to a non-empty
list in finitely many steps. The situation changes, however, when the operations
are called in a recursive context like this:

goal0 = let xs = nd1 xs in xs

goal1 = let xs = nd2 xs in xs

In this context a fair search will yield only the value [False,False] for goal0 and
[False,False] ? [False,True] for goal1 as the ambitious reader could verify by
the rules given in Chapter 2. This means that any denotational approach would
have to assign a different semantics to nd1 and nd2 in order to faithfully reflect
recursive let bindings.

11For a recent work on a more elaborated elimination scheme for functional languages see
[Siegel, 2008].

12My thanks to Jan Christiansen who brought this example to my notice.

6.5. RECURSIVE LET BINDINGS 135

By now the reader might wonder whether the original definition of the rules
might be better after all because it would allow the elimination of recursive
let bindings. However, as we will see next this conception would render many
transformations incorrect. Especially, this would effect transformations which
seem natural and are employed by any Curry system in use today.13

Example 6.5.2 (Transforming let Bindings) Consider the following five ex-
pressions:

expr1 = let xs = (0?1) : xs

ys = head xs : ys in head xs + head ys

expr2 = let xs = let x=0?1 in x : xs

ys = head xs : ys in head xs + head ys

expr3 = let x = 0?1

xs = x : xs

ys = head xs : ys in head xs + head ys

expr4 = let x = 0?1

xs = x : xs

ys = x : ys in head xs + head ys

expr5 = let x = 0?1 in

let xs = x : xs in

let ys = x : ys in head xs + head ys

As the reader may verify, all five expressions evaluate to the same values, namely
0 or 2 with the rules of Figure 2.1. And so they should, since the differences
from one expression to the other are all covered by well known equivalences.
These equivalences are widely considered to hold also for functional logic lan-
guages – both on a theoretical level and on the implementation level. Especially,
expr2 and expr3 on the one hand as well as expr4 and expr5 are identified by
all major Curry implementations by mapping them to the same intermediate
code. The step from expr1 to expr2 is a standard let introduction step like those
used by the flat operation. In a calculus for the manipulation of let expressions
for functional logic languages [López-Fraguas et al., 2007], this step corresponds
to the rewrite rule “(LetIn)”. From expr2 to expr3 we have another standard
transformation step called “(Flat)” [López-Fraguas et al., 2007]. From expr3

to expr4 we have an inlining of the deterministic operation head. Such a step is
also considered valid in the known approaches to functional logic computations.
Finally, from expr4 to expr5 we get by breaking up the (hierarchically ordered)
let bindings. Such a step is especially often used by compilers in order to mini-
mize complex binding groups. The let calculus [López-Fraguas et al., 2007] does
feature binding groups larger than one let {xk = ek} in e only “as a short cut
for” let {x1 = e1} in . . . in let {xk = ek} in e [López-Fraguas et al., 2007, page
200] which documents how strongly the authors feel that the step from expr4 to
expr5 preserves semantics.

However, with the definition of recursive let bindings by recursive functions,
e.g., by employing fix, the expressions expr1 and expr5 have a different meaning.
Beginning with expr5, we get the according expression

13I thank Holger Siegel for the examples and the fruitful discussion of the recursive let
bindings in Curry and Haskell.

136 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

expr5’ = let x = 0?1 in

let xs = fix (λ xs → x : xs) in

let ys = fix (λ ys → x : ys) in head xs + head ys

With a bit of lambda lifting and the introduction of recursive functions we get
the following equivalent first order program:

expr5’ = let x = 0?1 in head (xs x) + head (ys x)

xs x = x : xs x

ys x = x : ys x

It can be seen that by call-time choice semantics the expression expr5’ can only
be evaluated to the values 0 and 2 since “there is always the same choice for” x.
But what about the two bindings in expr1 which are in the same binding group?
Shall we introduce two functions xs and ys for them, implicitly assuming that
expr1 is equivalent to the following expression?

expr1_b = let xs = (0?1) : xs in

let ys = head xs : ys in head xs + head ys

In this case we get

expr1’ = head xs + head ys

xs = (0?1) : xs

ys = head xs : ys

For this program it is easy to see that expr1 also evaluates to 1, since there are
separate choices for (0?1) in each unfolding of the operation xs.

All in all the example illustrates that transformations used in many Curry
systems like hierarchically ordering binding groups would no longer be valid when
recursive let bindings could be replaced by recursive operations.

After all we have seen the best option might be to disallow recursive let
bindings in functional logic languages altogether. However, the concept of such
bindings has proven useful in functional languages both in terms of expressive-
ness and efficiency. The most prominent example is the generation of regular
numbers (also known as Hamming Numbers) which we will use as one of the
benchmarks in this section. Therefore, a good compromise might be to allow
recursive let bindings for expressions only which do not depend on the operation
(?), i.e., such expressions which are sure to be deterministic.

The first benchmarks of this section feature both a purely functional and a
functional logic program employing recursive let bindings.

Example 6.5.3 (Benchmark Regular Numbers)

reg n = let h = 1 : (map (2∗) h ‘union‘

(map (3∗) h ‘union‘ map (5∗) h))

in h !! n

union :: [Int] → [Int] → [Int]

union (a:as) (b:bs)

| a < b = a : union as (b:bs)

| a == b = a : union as bs

| otherwise = b : union (a:as) bs

6.6. ENCAPSULATED SEARCH 137

The second benchmark makes use of Curry’s logic features within a recursive
let binding.

Example 6.5.4 (Benchmark Non-Deterministic Swap)
The operation replace exchanges any element of a given list by a given value
and yields the new list along with the element which was replaced.

replace :: a → [a] → ([a],a)

replace x (y:ys) = (x:ys,y) ? (y:zs,z)

where

(zs,z) = replace x ys

The operation swap makes use of a recursive binding to swap two elements of a
given list [Erkök, 2002].

swap :: [Int] → [Int]

swap xs = let (ys,y) = replace z xs

(zs,z) = replace y ys in zs

Thus, a call to swap yields non-deterministically all possibilities to exchange
elements in that list (including exchanging an element by itself).

swap [1..3] = [1,2,3] ? [2,1,3] ? [3,2,1] ? [1,3,2]

Depending on the search strategy some of the results may be computed more than
once.

Figure 6.11 shows the results of benchmarking the illustrated programs. For
reg we have added the GHC to the systems as the program is purely functional.
The benchmark could not be executed by the MCC since it does not provide
numbers of arbitrary size. The CM approach does not feature recursive let
bindings at all.

systems reg 50000 reg 100000 swap [1..100] swap [1..200]

GHC+ 0.02 0.05 — —
IDHO+ 0.42 0.85 0.10 0.90
MCC — — 0.18 1.24
PAKCS 1.34 2.72 4.29 34.28

Figure 6.11: Benchmarks recursive let

6.6 Encapsulated Search

In Section 6.2 we have seen how the set of values of a possibly non-deterministic
computation can be collected and accessed. There, the intention was to provide
operations programmed in Haskell which were to be added to the transformed
programs. Encapsulated search is an extension of a functional logic programming
language which allows to access such values from within the functional logic
program. In our case this means that encapsulated search enables the Curry
programmer to access the set of all possible values of a given expression in his
Curry program. Encapsulated search is employed whenever different values of
one expression have to be related in some way, e.g., to compute the minimal

138 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

value of a given expression and in a more structured setting also to formulate a
search strategy.

Regarding related work Lux [1999] was the first to describe an approach to
the implementation of encapsulated search for lazy functional logic languages.
The described approach was integrated in the MCC compilation system. Later,
as described by Lux [2004], an alternative implementation with the same oper-
ational behavior was examined and compared to the first implementation.

A theoretic treatment of constructive approaches to negation as failure in
lazy functional logic languages is developed in the series of articles López-
Fraguas and Sánchez-Hernández [2000, 2002, 2004], Sánchez-Hernández [2006].
The first of these papers, López-Fraguas and Sánchez-Hernández [2000], ex-
tends the setting of lazy functional logic languages to a rewriting logic with
failure. In López-Fraguas and Sánchez-Hernández [2002] a narrowing relation
is developed for this approach and programs are extended such that the user
can express operations in a set-like way. The whole theory is extended to a
wider range of programs in the article López-Fraguas and Sánchez-Hernández
[2004] and, finally, an experimental step towards the implementation of the ap-
proach is given with Sánchez-Hernández [2006]. From our point of view the
latter implementation seems similar with regard to the operational behavior of
encapsulated search in the MCC. A more elaborated comparison between the
approaches does, however, not exist to date.

In Braßel et al. [2004b] several problems of encapsulated search in functional
logic languages are discussed and the existing implementations are divided in
two basic categories, strong and weak encapsulation. These two categories will
be explained in more detail in Section 6.6.2. Here it suffices to know that
the approaches mentioned so far fall under the category “weak”. Braßel et al.
[2004b] argue that from the application point of view a different approach to
encapsulated search as given de facto in Prolog and the PAKCS system for
Curry is desirable. The problem with this different approach, (strong encapsu-
lation), was, however, that existing systems back in 2004 did lack a declarative
operational semantics; the results depended on the order of evaluation.

The article by Braßel and Huch [2007a] presented the first approach to strong
encapsulation which did not depend on the order of evaluation. In the same
year Antoy and Braßel [2007] presented an analysis of the problems of weak
encapsulation based on term graph rewriting. One of the aims of the latter work
was to argue that a weak encapsulating view on programs is also important in
many application cases and that in the long run a mix of both approaches might
be needed.

The most recent contribution to the ongoing discussion is given by Antoy
and Hanus [2009]. There, a proposal for a syntactic extension of functional logic
programming is made. The idea is to provide the programmer with an approach
to encapsulated search which is more intuitive and predictable. The article also
contains a formalism based on term graph rewriting to show that the approach
— like all the others mentioned above with the exception of Antoy and Braßel
[2007] — does indeed not depend on the order of evaluation. The article gives
only basic ideas about how to implement the approach.

In this section we present the first implementation which combines the ad-
vantages of Braßel and Huch [2007a] with the one presented in Antoy and Hanus
[2009]. In Section 6.6.1 we will show how to implement a solution to the prob-
lems discussed in Braßel et al. [2004b]. Section 6.6.2 presents how to implement

6.6. ENCAPSULATED SEARCH 139

the approach of Antoy and Hanus [2009]. In both sections we will also examine
benchmarks for the presented implementations.

6.6.1 Primitives to Provide Encapsulated Search

Operations to provide encapsulated search come in different flavors. The first
family of operations we consider computes a list of values for a given argument.
For each search strategy S there may be one such operation which we will denote
by allValuesS and which is of type a → [a].

Example 6.6.1 (Encapsulated Search with allValues) In the context of
the program of Example 6.5.4 we have

nub (sort (allValuesDFS (swap [1,2,3])))

= [[1,2,3],[1,3,2],[2,1,3],[3,2,1]]

where nub eliminates duplicates in a given list. The operations allValuesS
should provide the list of values lazily. This is important in those cases in
which there are infinitely many possible values. For example, an operation to
yield all natural numbers could be defined as follows, see also Example 1.1.19.

nat = 0 ? 2∗nat ? 2∗nat+1

Any strict implementation of any allValuesS would diverge when applied to nat.
A lazy operation allValuesDFS (employing depth-first search) will only compute a
subset of the natural numbers for this definition, typically 0, 2, 4, 6, 8 . . . whereas
allValuesBFS would eventually yield any natural number (as long as the memory
suffices).

In principle, the main idea to implement encapsulated search has already
been introduced in Section 6.2.4. There, in order to improve the possible par-
allelism of the different threads for parallel search, we introduced a pure data
structure SetOfChoices to collect choices instead of the IORefs employed before.
Especially, we have presented the function

searchMPlus :: (NonDet a, MonadPlus m) ⇒ SetOfChoices → Try a → m a

which computes the possible values of a given expression for a given instance of
MonadPlus. Thus, all we have to do to implement allValuesDFS is to provide the
according instance declarations for Curry lists (cf. Example 6.0.2).

instance Monad List where

return x = Cons x Nil

Nil >>= _ = Nil

Cons x xs >>= f = append (f x) (xs >>= f)

instance MonadPlus List where

mzero = Nil

mplus = append

Then we can formulate allValuesDFS as:

allValuesDFS :: NonDet a ⇒ a → List a

allValuesDFS x = searchMPlus empty (try x)

140 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

For breadth-first search we can reuse the level monad we have employed for
the CM approach, cf. Section 6.2.2.

level :: NonDet a ⇒ a → FM.FMList a

level x = searchMPlus empty (try x)

We only need to convert the results to Curry lists.

allValuesBFS :: NonDet a ⇒ a → FM.FMList a

allValuesBFS x = Data.Foldable.foldr Cons Nil (level x)

It is also possible to let the Curry programmer define the search strategy
by different traversals of a representation of the search space. For this we first
define the type representing search trees as proposed in Braßel et al. [2004b].

data SearchTree a = Value a

| Or (SearchTree a) (SearchTree a)

| Fail

Note that, in contrast to the type Try defined above in Section 6.2, SearchTree
is a recursive type.

Again we only need to provide the according monad instances to use this
data structure for encapsulation.

instance Monad SearchTree where

return = Value

Fail >>= _ = Fail

Value x >>= f = f x

Or x y >>= f = Or (x >>= f) (y >>= f)

instance MonadPlus SearchTree where

mzero = Fail

mplus = Or

With this we can define:

searchTree :: NonDet a ⇒ a → SearchTree a

searchTree x = searchMPlus empty (try x)

Different search strategies can now be defined in the Curry program as tree
traversals. We only give the definition of depth-first search. See [Braßel and
Huch, 2007b] for a definition of breadth-first search (bf).

df :: SearchTree a → [a]

df (Value v) = [v]

df (Or t1 t2) = df t1 ++ df t2

df Fail = []

Finally, note that the approach for parallel search presented in Section 6.2.4
can also be employed for encapsulated search as it does not rely on I/O opera-
tions.

To benchmark our approach to encapsulated search, we reevaluate the ex-
amples of Section 6.2. This allows to directly relate the performance to the
results employing the primitive top-level search which is not accessible for the
Curry programmer.

Note that the encapsulated variant of breadth-first search is indeed faster
than the top-level search defined in Section 6.2.2. The reason is that the level
monad is more sophisticated than our implementation of breadth-first search.

6.6. ENCAPSULATED SEARCH 141

search operation perm [1..9] perm [1..10]

allValuesDFS 0.35 3.86
allValuesBFS 0.46 5.08
df ◦ searchTree 0.38 4.16
bf ◦ searchTree 1.18 12.50

Figure 6.12: Benchmarks for encapsulated search

6.6.2 Set Functions

Braßel et al. [2004b] distinguish two versions of encapsulated search: strong
and weak encapsulation. When allValues is an operation to provide strong en-
capsulation then for any expression e and any context C the evaluation of the
sub expression allValues(e) within that context, i.e., in C[allValues(e)], does
not induce non-deterministic branching. An operation providing weak encap-
sulation, in contrast, might induce non-determinism if applied to expressions
declared “outside” of the encapsulation.14 Moreover, in a declarative version of
strong encapsulation the value of the (sub) expression allValues(e) does not
depend on the context.

Example 6.6.2 (Weak and Strong Encapsulation)
The operation findall :: (a → Success) → [a] is a primitive of the MCC to
provide weak encapsulation. For a given expression e the template

findall (λ y → y=:=e)

provides weak encapsulation similar to the operation allValuesDFS from the pre-
vious section. We call this a “template” as the surrounding context has to be
textually copied wherever it is to be used in a program. A definition like

weakAllValuesDFS e = findall (λ y → y=:=e)

would not behave as desired. Now consider the following example expressions.

goal0 = allValuesDFS (let x=0?1 in x)

goal1 = let x=0?1 in allValuesDFS x

goal2 = findall (λ y → let x=0?1 in y=:=x)
goal3 = let x=0?1 in findall (λ y → y=:=x)

For these we have goal0=goal1=goal2=[0,1]. For goal3, however, we have
a non-deterministic evaluation to [0] or [1]. The reason is that x is defined
“outside” of the weak encapsulation.

Finally, in a declarative version of strong encapsulation the expression goal4

as defined by

goal4 = let x=0?1 in (x,allValuesDFS x)

should evaluate to (0,[0,1]) ? (1,[0,1]) no matter in what order the arguments
of the tuple are evaluated.

14We will employ the notion of inside/outside of an encapsulation informally here. The
interested reader is referred to Antoy and Braßel [2007], Antoy and Hanus [2009] for a formal
treatment.

142 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

Braßel et al. [2004b] argue that the strong encapsulation view is to be pre-
ferred for two reasons: 1. It is sometimes necessary to ensure that a given
expression does not induce non-determinism, e.g., when printing values in the
I/O monad. 2. The implications of distinguishing the inside/outside of encapsu-
lation is too hard to understand such that even experts have difficulty predicting
the outcome of relatively simple definitions.

Later works by Antoy and Braßel [2007], Antoy and Hanus [2009] argue,
however, that the behavior of weak encapsulation is also important to formulate
many logic programs in an expressive way. In answer to the two reasons above
this means that some operation for strong encapsulation is necessary but that
we need syntactic extensions to make programs using weak encapsulation better
understandable. The latter answer leads to the introduction of set functions.
For a given operation f the corresponding set function f_set is an operation
to compute with the sets of all values possibly yielded by f. In accordance to
call-time choice semantics, the non-determinism induced by evaluating the ar-
guments of f_set is treated as if the evaluation happened before the application
of f_set.

Example 6.6.3 (Set Functions)
A reformulation of the goals of Example 6.6.2 with set functions could look like
this:

fun0 = let x=0?1 in x

fun1 x = x

goal2 = fun0_set

goal3 = let x=0?1 in fun1_set x

For these definitions it seems more natural that goal2 should evaluate to {0,1}

whereas goal2 evaluates to {0} or {1}.

Another point emphasized by Antoy and Hanus [2009] is that the results of
encapsulation should not be lists but feature a set-like interface rather. If the
results should be enlisted, they need to be yielded in accordance with a total
order. From all the operations on sets proposed by Antoy and Hanus [2009], we
will use only the test whether a given set is empty.

isEmpty :: Values a → Bool

Note that the same interface could be used for strong encapsulating operations
as discussed in the previous section. The type Values is in our setting declared
as:

data Values a = Values [a]

| Choice_Values ID (Values a) (Values a)

| Fail_Values

Accordingly, the test of emptiness can be defined by:

isEmpty (Values xs) = if null xs then True else False

Note that the True and False are the once defined in Example 6.0.2, not Haskell’s
Prelude.True and Prelude.False. The operation isEmpty has to be extended by
further rules in correspondence with our translation scheme.

6.6. ENCAPSULATED SEARCH 143

isEmpty (Values xs) = if null xs then True else False

isEmpty (Choice_Values i x y) = choiceCons i (isEmpty x) (isEmpty y)

isEmpty _ = failCons

For the internal (Haskell) implementation we also need the following construc-
tors of sets.

empty :: Values a

empty = Values []

insert :: a → Values a → Values a

insert x (Values xs) = Values (x:xs)

union :: Values a → Values a → Values a

union (Values xs) (Values ys) = Values (merge xs ys)

where merge [] ys = ys

merge (x:xs) ys = x : merge ys xs

These constructors also need to be extended by rules treating Choice_Values and
failure but we omit these schematic cases here. More interesting is that our def-
inition makes no attempt to manage duplicate entries as might be expected for
a representation of sets. This is necessary to obtain “maximal laziness” for the
implementation, e.g., in order to not loose completeness because of evaluating
possibly undefined expressions.

It is straightforward to give instances of the type class Monad for the type
Values.

instance Monad Values where

return x = insert x empty

Values xs >>= f = foldr union empty (map f xs)

instance MonadPlus Values where

mzero = empty

mplus = union

With these instance declarations we could also use Values to introduce a set-
based operation of the allValues-family as discussed in the previous section.
We now turn to extend this construct to implement weak encapsulation. As
basic considerations for implementing set functions, Antoy and Hanus [2009]
suggest in examples and pictures that expressions should be tagged to mark
whether they are inside or outside of encapsulation. They also put forward the
idea that these marks should be attributes of the computed values, especially.
An important point, however, is that it should be possible to nest set functions,
i.e., employ the set function of operations which in turn call other set functions.
With this possibility a simple flag inside/outside would not suffice. The idea to
put the information to values is questionable since values are often referenced
from different contexts, in other words they tend to be inside as well as outside
of a given context so to speak. In our approach each set function is provided
with a unique identifier in order to allow nested encapsulation. Instead of values
we will tag the choice constructors with these identifiers, more specifically, we
extend the type ID to carry the tag information. Fortunately, generating unique
identifiers for set functions does not need any additional infrastructure. We can
simply employ the IDs we have introduced to identify non-deterministic choices.

144 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

Our extension of the data type ID looks as follows. (For simplicity we again
use integers to identify, not IORefs.)

data ID = ID [Integer] Integer

The additional list of Integers denotes those encapsulations for which the ac-
cording choice constructor should be considered as “outside”, i.e., it identifies
those calls to set functions in which the choice constructor appeared at argument
position. In the following we will call this information “cover” information as it
“hides” a choice constructor from being encapsulated. For additional operations
we need a constructor and a selector to retrieve this information and add to or
delete from it as well as an additional selector for the original identifier.

covered :: ID → [Integer]

covered (ID is _) = is

mkInt :: ID → Integer

mkInt (ID _ i) = i

mkID :: Integer → ID

mkID = ID []

addCover :: Integer → ID → ID

addCover j (ID is i) = ID (j:is) i

deleteCover :: Integer → ID → ID

deleteCover i (ID is j) = ID (Data.List.delete i is) j

In order to add cover information to arbitrary data structures, we need the
operation cover. For simplicity, cover is defined here for simple data types
only. For complex data structures, cover needs to decent into all arguments.
This could be achieved by either introducing a new type class or using generic
programming features as shipped with GHC.

cover :: NonDet a ⇒ ID → a → a

cover capsID x = cov (try x)

where

cov Fail = failCons

cov (Val x) = x

cov (Choice i x y) = choiceCons (addCover capsID i)

(cov (try x))

(cov (try y))

The main extension of the setting to integrate weak encapsulation is the defi-
nition of an extended variant of the function searchMPlus.15 The differences to
the original definition are:

• There is an additional parameter capsID of type Integer which identifies
the current capsule.

• When a choice constructor is encountered, we check whether capsID is
present in the list of covered identifiers. If so the non-determinism has to
“escape” the capsule. If not the choices are connected via mplus as in the
original definition.

15The original definition is to be found in Section 6.2.4.

6.6. ENCAPSULATED SEARCH 145

• Therefore, for the given instance of MonadPlus m it must now be possible
to yield non-deterministic choices of the resulting monadic values. This is
ensured by an additional class context NonDet (m a).

The complete definition looks as follows.

searchMPlusND :: (MonadPlus m, NonDet a, NonDet (m a)) ⇒
Integer → SetOfChoices → Try a → m a

searchMPlusND _ _ Fail = mzero

searchMPlusND _ _ (Val v) = return v

searchMPlusND capsID set (Choice i x y)

| elem capsID (covered i) = choiceCons (deleteCover capsID i)

(search set (try x))

(search set (try y))

| otherwise = choose (lookupChoice’ set i)

where

choose ChooseLeft = search set (try x)

choose ChooseRight = search set (try y)

choose NoChoice = search (pick ChooseLeft) (try x)

‘mplus‘ search (pick ChooseRight) (try y)

pick = setChoice’ set i

search = searchMPlusND capsID

There is only one piece left to obtain our aim. We need to address how to define
the set functions themselves. Set functions are introduced to our setting via a
family of predefined operations, one for each arity. We only show the definition
for arity 0 and 1, from which the remaining definitions can be deduced in a
straightforward way.

set0 :: (NonDet res) ⇒ res → ID → Values res

set0 x i = searchMPlusND (mkInt i) Data.Map.empty (try x)

set1 :: (NonDet a,NonDet res) ⇒ (a→ID→res) → a → ID → Values res

set1 f x i = let res = f (cover i x) (leftID i)

in searchMPlusND (mkInt i) Data.Map.empty (try res)

Note that the argument x is covered with the given ID which is the identifier of
the current capsule.

Example 6.6.4 (Implementation of Set Functions) Reconsider the defini-
tions of Example 6.6.3. The functions corresponding to fun0, fun1 can be de-
fined as:

fun0_set = set0 fun0

fun1_set x = set1 fun1 x

With these definitions it should be clear from the explanations of the previous
section that goal2=fun0_set evaluates to {0,1}. For goal3 we have the following
equations where (mkID 7) is chosen arbitrarily to be different from 0/1:

goal3 (mkID 7)

= let x=(0?1) (mkID 7) in fun1_set x (leftID (mkID 7))

= fun1_set ((0?1) (mkID 7)) (leftID (mkID 7))

= set1 fun1 ((0?1) (mkID 7)) (leftID (mkID 7))

= set1 fun1 (Choice (ID [] 7) 0 1) (mkID 14)

146 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

= searchMPlusND 14 empty

(try (fun1 (cover 14 (Choice (ID [] 7) 0 1)) (leftID (mkID 14))))

= searchMPlusND 14 empty

(try (fun1 (Choice (ID [14] 7) 0 1) (mkID 28)))

= searchMPlusND 14 empty (Choice (ID [14] 7) 0 1)

= Choice_Set (ID [] 7) (searchMPlusND 14 empty (try 0))

(searchMPlusND 14 empty (try 1))

= Choice_Set (ID [] 7) (return 0) (return 1)

= Choice_Set (ID [] 7) (Set [0]) (Set [1])

The result is the expected representation of {0} ? {1}.

For benchmark we choose an example adapted from Antoy and Braßel [2007].

Example 6.6.5 (Queens with (Weak) Encapsulation)
The problem of computing the number of possibilities to place queens on an n×n
chessboard without capture has been used for benchmarking higher-order func-
tional programs in Section 6.1.2. We now present a different version adapted
from Antoy and Braßel [2007] which makes use of the fact that it is easier to
state when a position is unsafe, i.e., one queen captures another, than to ex-
press that a position is safe. Therefore, all possibilities for capture can be tested
non-deterministically and encapsulated search can be employed to see whether
one of these tests was successful. Before presenting the concise formulation, we
need two small auxiliary operations.

memberWithRest :: [a] → (a,[a])

memberWithRest (x:xs) = (x,xs) ? memberWithRest xs

memberWithIndex :: [a] → (a,Int)

memberWithIndex xs = mwi 0 xs

where

mwi i (x:xs) = (x,i) ? mwi (i+1) xs

The operation memberWithRest yields any member of a given list as well as the
remaining list. Operation memberWithIndex also yields any member of a list
but along with its index. Both operations can be chained together to yield two
members of a given list along with their distance.16

membersWithDelta :: [a] → (a,Int,a)

membersWithDelta l = case memberWithRest l of

(x,xs) → case memberWithIndex xs of

(y,i) → (x,i,y)

With this operation the queens problem can be expressed concisely as:

queens n = safe (perm (list 1 n))

safe p | isEmpty (unsafe_set p) = p

16Note that this operations can be expressed much more concisely using function patterns
Antoy and Hanus [2005] as: membersWithDelta ((x:xs)++(y:)) = (x,length xs,y)

6.7. FREE VARIABLES REVISITED 147

unsafe l = capture (membersWithDelta l)

where

capture (i,z,j) | abs (i-j)-1 == z = success

For the tested systems the operation unsafe_set has to be expressed differently.
In the MCC the operation has to be expressed as

unsafe_set l = findall (λ x → x=:=unsafe l)

and the function isEmpty has to be defined as the null test on normal lists.
For our approach and PAKCS we have:

unsafe_set l = set1 unsafe l

Note, however, that the implementation in PAKCS is incomplete as it strictly
evaluates arguments the arguments of a set function before application.

The results of benchmarking queens for boards of sizes 8 and 9 and are
depicted in Figure 6.13.

systems queens 8 queens 9

IDHO+ 0.85 13.56
MCC 0.17 1.72
PAKCS 5.76 60.14

Figure 6.13: Benchmarks for narrowing

6.7 Free Variables Revisited

In Section 3.2 we have obtained the result that free variables can be replaced
by generator functions. This result formed the base of the implementation
so far. One shortcoming of the result is, however, that it holds with regard
to free variables used in context only. As stated by Lemma 3.2.6, there is a
difference with regard to free variables evaluated at top level. For example,
evaluating the Curry expression let x free in x :: Bool does not induce non-
determinism while the corresponding expression let x=generateBool in x does,
as it yields True ? False. In this section we eliminate this last shortcoming for
our implementation.

All that is needed to obtain our aim is the possibility to distinguish non-
determinism induced by operation (?) from the one induced by generating op-
erations. We do so by extending the declaration of identifier.17

data ID = ID Integer

| FreeID Integer

We assume that the operations initID,leftID,rightID yield identifiers with the
constructor ID.

The family of operations generate is provided by a new type class.

17Note that this extension is orthogonal to the one discussed in the previous chapter. We
discuss a different extension for simplicity, only, instead of combining both extensions in this
section.

148 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

class NonDet a ⇒ Generable a where

generate :: ID → a

Instances of this class add the constructor FreeID to the choices.

Example 6.7.1 (Instances of Class Generable)
Defining instances of class Generable is a straightforward implementation of the
scheme discussed in Section 3.2.18

freeID (ID i) = FreeID i

instance Generable Bool where

generate i = Bool_Choice (freeID i) False True

instance Generable Peano where

generate i = let r = rightID i in

Peano_Choice (freeID i) O (S (generate r))

instance Generable a ⇒ Generable (List a) where

generate i = let l = leftID i

r = rightID i

in List_Choice (freeID i) Nil (Cons (generate l) (generate r))

Now the only aspect left to model is narrowing, i.e., the crossover from free
variable to a non-deterministic choice. For this we introduce the following simple
operation:

narrow :: ID → ID

narrow (FreeID r) = ID r

narrow x = x

This operation is inserted in the transformation scheme for pattern matching,
cf. Section 5.2. The original definition

f(xm, Choice(x, y, z)) = Choice(x, f(xm, y), f(xm, z))

is replaced by

f(xm, Choice(x, y, z)) = Choice(narrow(x), f(xm, y), f(xm, z))

Example 6.7.2 (Free Variables and Narrowing) Consider the two goals

goal0, goal1 :: Bool

goal0 = let x free in x

goal1 = let x free in not x

The function not is now translated as:

not True = False

not False = True

not (Bool_Choice i x y) = choiceCons (narrow i) (not x) (not y)

Therefore, the evaluation of the two goals is as follows, where for simplicity we
assume identifiers to be integers.

18Recall that the type for Peano numbers is given by data Peano=O|S Peano, cf. Exam-
ple 1.1.14.

6.8. ADDING CONSTRAINTS 149

goal0 (ID 1) = (generate 1 :: Bool)

= Bool_Choice (FreeID 1) False True

goal1 (ID 1) = not (generate 1 :: Bool)

= not (Bool_Choice (FreeID 1) False True)

= Bool_Choice (narrow (FreeID 1)) (not False) (not True)

= Bool_Choice (ID 1) True False

With this example it should be clear that free variables can be distinguished from
other non-determinism by the run-time system.

For benchmarks we have chosen the definitions to solve the simple equations by
narrowing introduced in Example 1.1.15.

half :: Peano → Peano

half y | equal (add x x) y = x where x free

toPeano :: Int → Peano

toPeano n = if n==0 then O else S (toPeano (n-1))

Figure 6.14 shows the result of solving the equations for 10000 and 20000. The
CM compiling system does not feature free variables yet.

systems half (toPeano 10000) half (toPeano 20000)

IDHO+ 2.38 9.40
MCC 3.50 16.93
PAKCS 94.21 403.03

Figure 6.14: Benchmarks for narrowing

6.8 Adding Constraints

One of the most successful paradigms in the field of logic programming is called
programming with constraints. Indeed, the paradigm is so influential that many
people regard logic programming languages like Prolog as a sub class of pro-
gramming languages with constraints, cf. Hofstedt and Wolf [2007]. In this
section we integrate constraints into our setting by implementing unification,
i.e., the problem to find a substitution σ such that for two given t, t′ we get
σ(t) = σ(t′), if such a σ exists. Obviously, the concept of unification is easier
when the considered terms are of a simple data type like Bool. Therefore, we
partition this chapter in two according sub sections. For simplicity, we omit the
topic of integrating an occur check, i.e., to render unifications like, e.g., x=:=S x

as unsatisfiable.

6.8.1 Unifying Simple Data Types

We first illustrate the operational behavior of unification in Curry by example.

Example 6.8.1 (Unification) In Curry it is possible to extend the defining
rules of operations by constraints, i.e., expression of the predefined type Success.
There is only a single constructor of this type, cf. 1.1.1, such that expressions

150 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

either evaluate to this constructor or fail. The operation to compute a unification
is (=:=) :: a → a → Success and we could write for example:

f x y | x=:=y = x

With this definition of f, all of the following expressions should evaluate to True,
binding all free variables x,y to True in the evaluation process.

goal0 = let x free in f True x

goal1 = let x free in f x True

goal2 = let x,y free in f True (f x y)

The evaluation of the following expression, in contrast, should lead to a failure:

goal3 = let x,y free in f (f (f x y) False) True

In order to extend our setting by constraints, we need one additional con-
structor guardCons :: Constraint → a → a of every possible type. We intro-
duce this constructor by extending the type class NonDet.

class NonDet a where

...

guardCons :: Constraint → a → a

Along with the type class we also need to extend the definition of Try in
order to enable general deconstruction of values. The deconstruction is also
supported by the auxiliary operation tryChoice

data Try a = Val a | Choice ID a a | Free ID a a | Guard Constraint a

tryChoice :: ID → a → a → Try a

tryChoice i@(ID _) = Choice i

tryChoice i@(FreeID _) = Free i

Example 6.8.2 (Adding Guards to Data Declarations)
Reconsider the definitions of Example 6.3.1. The declarations are extended to
add guards:

data Bool = False | True | ...

| Guard_Bool Constraint Bool

data List a = Nil | Cons a (List a) | ...

| Guard_List Constraint (List a)

instance NonDet Bool where

...

guardCons = Guard_Bool

try (Choice_Bool i x y) = tryChoice i x y

try (Guard_Bool c e) = Guard c e

...

instance NonDet (List a) where

...

guardCons = Guard_List

6.8. ADDING CONSTRAINTS 151

try (Choice_List i x y) = tryChoice i x y

try (Guard_List c e) = Guard c e

...

The transformation scheme is altered such that guards, too, are lifted. More
precisely, in analogy to the translation rule

f(xm, Choice(x, y, z)) = Choice(narrow(x), f(xm, y), f(xm, z))

from the previous section we have in addition

f(xm, Guard(xc, xe)) = Guard(xc, f(xm, xe))

Example 6.8.3 (Lifting Guards)
The transformed definition of operation sorted as shown in Section 6.3 is ex-
tended like thus:

sorted :: List Int → Bool

sorted Nil = True

sorted (Cons m xs) = sorted2 m xs

sorted (Choice_List i x y) = consChoice (narrow i) (sorted x) (sorted y)

sorted (Guard_List c e) = guardCons c (sorted e)

sorted _ = consFail

The considerations up to now are valid for extending our approach for any
kind of constraints. The next step is to model the constraints needed to imple-
ment unification. For this we have to consider which class of constraints can be
solved with local information and which require global information. With regard
to unification it is clear that constraints like True=:=True or True=:=False can
be reduced to Success or failCons, respectively, without global information. In
general, any unification which involves only ground terms can be treated this
way. Global information is only needed in two cases,

a) binding one free variable to another and

b) binding a free variable to a ground term.

Binding a variable to a ground term of a simple type like Bool means that
we need to add a Choice which must correspond to the definition of generate

for that type as introduced in the previous section. We will illustrate this by
example.

Example 6.8.4 Reconsider the definition of generate from Example 6.7.1.

instance Generatable Bool where

generate i = Bool_Choice (freeID i) False True

In order to bind the variable identified by freeID i to the ground term False,
we need to add the choice ChooseLeft for i to our set of choices and for True

we add ChooseRight, respectively. The case that the given type has more than
two constructors or that his constructors have arguments is treated in the next
section.

152 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

The representation of constraints in our setting needs to allow an association
of identifiers with choices. In other words, it must be translated to what we store
in our sets of choices. For the second case which cannot be decided locally, i.e.,
binding a free variable to another, we need a way to associate the identifiers of
two free variables. In extension to what we have seen before, it is a natural idea
to represent the information by extending the type Choice.

data Choice = NoChoice | ChooseLeft | ChooseRight

| BindTo ID

With this definition the type constraint to support unification is simply:

data Constraint = ID :=: Choice

In order to compute the correct constraints for a given term and also to treat
the locally solvable part of unification, we introduce a new type class.

class (NonDet a) ⇒ Unifiable a where

bind :: ID → a → Constraint

(=.=) :: a → a → Success

Instances for this class are straight forward to formulate.

instance Unifiable Bool where

bind i False = i :=: ChooseLeft

bind i True = i :=: ChooseRight

True =.= True = Success

False =.= False = Success

_ =.= _ = failCons

With this, we can define the operation (=:=). In a case distinction of the
different constructors of type Try the operation directly solves the case which
require only local information and defers the ones needing global information
by introducing a guardCons constructor.

(=:=) :: Unifiable a ⇒ a → a → Success

x =:= y = unify (try x) (try y)

where

...

unify (Val vx) (Val vy) = vx =.= vy

unify (Val v) (Free j _ _)

= guardCons (bind j v) success

unify (Free i _ _) (Val v)

= guardCons (bind i v) success

unify (Free i _ _) (Free j _ _)

= guardCons (i :=: BindTo j) success

The cases omitted above are the schematic cases to lift the guard and choice
constructors and to propagate failure.

Global information is only available at the top level of evaluation, i.e., in
one of the search operations examined in Section 6.2. Here, we reconsider the
required extension of depth-first search only. For this recall that at the heart
of defining top level search operations we need not only to add the information

6.8. ADDING CONSTRAINTS 153

to our current set of choices but we need also the ability to reset this infor-
mation again. From the point of view of constraint programming, the sets of
choices already represent a constraint store, i.e., a structure to collect propa-
gated information about the solvability of currently valid constraints. Informally
speaking, the task of solving a constraint involves propagating new information
when available as well as allowing to reset that information when a part of the
search space has been exhausted. Consequently, an operation solve in our ap-
proach needs to propagate information contained in a given constraint to the
store as well as yield an operation to reset the store to the previous state. A
straightforward way to model this in the setting of IORefs for identifiers is to
define an I/O-operation, which yields another I/O-operation (the “reset”) as
result if successful and Nothing for a failure.

type Solved = IO (Maybe (IO ()))

solved, unsolvable :: Solved

solved = return (Just (return ()))

unsolvable = return Nothing

solve :: Constraint → Solved

A typical auxiliary case for this function is an operation to set a given identifier
reference to a given choice and yield a setting to NoChoice as result.

setUnsetChoice :: ID → Choice → Solved

We will define this operation below. First we define the solve which forms the
context in which setUnsetChoice is employed.

solve :: Constraint → Solved

solve (i :=: cc) = lookupChoice i >>= choose cc

where

choose (BindTo j) ci = lookupChoice j >>= check j ci

choose c NoChoice = setUnsetChoice i c

choose c x | c==x = solved

choose _ _ = unsolvable

check j NoChoice NoChoice = setUnsetChoice i (BindTo j)

check _ NoChoice y = setUnsetChoice i y

check j x NoChoice = setUnsetChoice j x

check _ x y | x==y = solved

check _ _ _ = unsolvable

The astute reader might have pondered that unification can produce chains
of variable bindings. For example, solving first x1=:=x2 and some time af-
ter that x2=:=x3 would lead to a chain x1 → x2 → x3. With this chain in
place another unification x2=:=x1 is problematic with the above definition.
We would end up with the rule “bind _ x y |x==y =solved” substituted by
{x→ BindTo x3,y→ BindTo x2} and the equality test would fail. The solution to
this problem is not changing the definition of solve but making variable chains
transparent by a redefinition of lookupChoice.

lookupChoiceRaw :: ID → IO Choice

lookupChoiceRaw i = readIORef (ref i)

154 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

lookupChoice :: ID → IO Choice

lookupChoice i = lookupChoiceRaw i >>= unchain

where

unchain (BoundTo j) = lookupChoice j

unchain c = return c

Of course unchaining is also needed to set choices. But in order to correctly
reset these choices later, we need to know the exact identifier associated with
the given choice. For this purpose we add another operation which has the
type signature setChoiceGetID :: ID → Choice → IO ID to the setting. This
new operation calls the original setChoice.

setChoiceGetID :: ID → Choice → IO ID

setChoiceGetID i c = do j ← lookupChoice i

setChoice j c

return j

With this we can declare the last missing operation setUnsetChoice.

setUnsetChoice :: ID → Choice → Solved

setUnsetChoice i c = do

j ← setChoiceGetID i c

return (setChoice j NoChoice)

This completes the implementation of unification for simple data types.

6.8.2 Complex Data Types

Unification for complex data types can be developed by reconsidering the con-
structions of the previous section. There, we have introduced the type class
Unifiable with the two operations bind and (=.=). The latter should decide
the unification on ground terms and the first should define what constraints
should be added when a free variable is to be bound to a ground term. Let us
reconsider these operations with regard to lists.

Example 6.8.5 Reconsider the definition for generate for the list type (slightly
polished):

instance Generatable a ⇒ Generatable (List a) where

generate i = List_Choice (freeID i)

Nil

(Cons (generate (leftID i))

(generate (rightID i)))

The definition of operation bind must correspond to this definition. There-
fore, the identifier of a variable which is to be bound to Nil must be associated
with ChooseLeft. But what should be the constraints to bind a variable to, e.g.,
Cons True Nil? To correspond to the definition of generate, three associations
must be established:

• the identifier of the given variable, e.g., i, with ChooseRight

• the identifier leftID i with ChooseRight (according to the definition for
Bool)

• the identifier rightID i with ChooseLeft to represent Nil

6.8. ADDING CONSTRAINTS 155

As illustrated in the example we need to communicate associations for sev-
eral identifiers in the result of bind. For this we change our definition of class
Unifiable such that more than one constraint can be yielded for a given binding.

class NonDet a ⇒ Unifiable a where

bind :: ID → a → [Constraint]

...

Example 6.8.6 (Constraints for Complex Data) As developed in the pre-
vious example the constraints computed for the call bind i (Cons True Nil)

should be:

[i :=: ChooseRight, leftID i :=: ChooseRight, rightID i :=: ChooseLeft]

The definition of bind for lists is, accordingly:

class (NonDet a) ⇒ Unifiable a where

bind i C_Nil = [i :=: ChooseLeft]

bind i (C_Cons x xs)

= i :=: ChooseRight : bind (leftID i) x ++ bind (rightID i) xs

There is, however, a further case left to define bind which does not appear
when only simple types are considered. As we will see below, extending the
setting to complex data implies that bind could also be called with a free vari-
able as argument. In this case the result should be BindTo. For example, the
definition for the List type class instance is completed by the following rule.

bind i (List_Choice j _ _) = [i :=: BindTo j]

The extension of (=.=), the second operation of class Unifiable, is straight-
forward. For the arguments of complex constructors, it needs to decent by
calling the general operation (=:=). When more than one argument is present
the calls to (=:=) are put together by (&) :: Success → Success → Success.

Example 6.8.7 (Defining Operation =.=)

instance Unifiable a ⇒ Unifiable (List a) where

...

Nil =.= Nil = success

Cons x xs =.= Cons y ys = x=:=y & xs=:=ys
_ =.= _ = failCons

In order to reformulate the definition of (=:=) for complex data types, we
need a generic operation to compute the normal forms of a given expression. For
convenience, this operation takes a continuation to be applied to the computed
normal form. We only give the signature declarations and note where we include
the corresponding type class context. The definitions of Normalform instances
are fully schematic.

class (NonDet a, NormalForm a) ⇒ Unifiable a where ...

class Normalform a where

($!!) :: (a → b) → a → b

156 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

To adapt the operation (=:=) to the extended setting, we need only to
redefine those cases of auxiliary operation unify where a free variable is to be
bound to an expression in head normal form. These cases have to be adapted
such that the expression is evaluated to a complete normal form employing
($!!) and such that the result contains all the constraints in the list computed
by bind.

unify (Val v) (Free j _ _) =
(foldr guardCons success ◦ bind j) $!! v

unify (Free i _ _) (Val v) =
(foldr guardCons success ◦ bind i) $!! v

The definition of operation solve is unchanged in the extended setting.
There is, however, one last implication of the setting with complex data types
to consider. When binding a variable of type, e.g., List Bool, there is also more
than one association of identifiers and choices invloved. Indeed, potentially,
infinitely many identifiers must be associated with each other. Clearly, we can-
not solve this problem by simply adding all the necessary constraints at once.
Rather, we propagate binding information on demand. In order to avoid dupli-
cating work, we need to distinguish whether bindings for an identifier i have
already been propageted to leftID i and rightID i or not. For this, we let an
entry BindTo i in the set of choices denote that no bindings have yet been added
for the children leftID i and rightID i. To represent that such information has
already been propagated, we add a new constructor BoundTo :: ID → Choice.

data Choice = NoChoice | ChooseLeft | ChooseRight

| BindTo ID | BoundTo ID

Whenever lookupChoice encounters a choice BindTo it propagates the informa-
tion.

lookupChoice :: ID → IO Choice

lookupChoice i = lookupChoiceRaw i >>= unchain

where

unchain (BoundTo j) = lookupChoice j

unchain (BindTo j) = do

setChoice i (BoundTo j)

setChoice (leftID i) (BindTo (leftID j))

setChoice (rightID i) (BindTo (rightID j))

lookupChoice j

unchain c = return c

Of course, we also need to include the propagated information when resetting
a variable binding in the set of choices.

resetFreeVar :: ID → IO ()

resetFreeVar i = lookupChoiceRaw i >>= propagate

where

propagate (BindTo _) = setChoice i NoChoice

propagate (BoundTo _) = do

setChoice i NoChoice

resetFreeVar (leftID i)

resetFreeVar (rightID i)

6.9. DRAWBACKS OF THE PRESENTED APPROACH 157

With this the redefinition of setUnsetChoice concludes the extension to complex
data types.

setUnsetChoice :: ID → Choice → Solved

setUnsetChoice i c = do j ← setChoiceGetID i c

case c of

BindTo _ → return (Just (resetFreeVar j))

_ → return (Just (setChoice j NoChoice))

For benchmark we have used the following standard example for unification
in Curry.

last :: [a] → a

last l | xs ++ [x] =:= l = x where xs,x free

Figure 6.15 shows the result of computing the last element of a list with 10,000
and 100,000 elements.

systems last (replicate 10000 True) last (replicate 100000 True)

IDHO+ 0.01 0.14
MCC 0.01 0.16
PAKCS 0.22 2.12

Figure 6.15: Benchmarks for unification

We have shown how to extend our setting by constraints to compute unifi-
cation. The presented implementation should also suffice to give an idea how
further possibilities like finite domain constraints, inequality constraints, con-
straints to implement function patterns and a concurrent implementation of
operation (&) can be approached.

6.9 Drawbacks of the Presented Approach

As far as we have seen in this chapter the presented approach can be regarded as
a serious alternative to current compilation techniques for functional logic pro-
gramming languages. There is, however, one major drawback to our approach
we would like to examine in this section.

It is a well known problem for lazy functional languages that Haskell ex-
pressions like let (t1,t2)=e in f t1 t2 can induce memory leaks as examined
by Wadler [1987], Sparud [1993]. The reason is that the standard way to treat
the expression is to simplify it to, e.g., let x=e in f (fst x) (snd x) before
continuing with the compilation process. This simplified expression can be very
bad for the memory behavior, e.g., in the following circumstances.

• t1=fst x evaluates to a very large term

• f consumes this term (its first argument) but touches its second argument
only after this consumption is finished

In these circumstances the big data term t1, although consumed, is still
referenced by the term (snd x) as we have x=(t1,t2). A single step of evaluating
snd x would free all the memory, but this step is done very late, although the
evaluation of (fst x) already ensures that this single step would not lead to a

158 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

failure. Modern compilation systems produce special code for these situations.
This code ensures that whenever fst x is evaluated, snd x is also reduced one
step and vice versa, cf. Sparud [1993]. Sometimes this task is also assigned to
the garbage collector, cf. Wadler [1987]. The problem is, however, that neither
the compiler nor the garbage collector are always able to reliably detect these
kinds of situations. Therefore, this problem is still an open question for the
efficient compilation of functional languages.

There are situations in which the problem discussed above affects our ap-
proach with a multiplied impact. To give a concrete example, reconsider the def-
inition of memberWithDelta :: [a] → (a,Int,a) as introduced in Example 6.6.5.
There we have defined the operation as:

membersWithDelta :: [a] → (a,Int,a)

membersWithDelta l = case memberWithRest l of

(x,xs) → case memberWithIndex xs of

(y,i) → (x,i,y)

If we redefine this operation to

membersWithDelta :: [a] → (a,Int,a)

membersWithDelta l = (x,i,y) where (x,xs) = memberWithRest l

(y,i) = memberWithIndex xs

the effects are quite notable. Instead of 0.81 seconds to compute queens 8 the
new program fails to complete the evaluation because the 4 GB memory of the
machine we used for benchmarking do not suffice. For the evaluation of queens 7

the program takes 11.48 seconds where the original program needs only 0.16.
In order to cope with this problem, some program analysis to detect such

bad situations would be needed. In the mean time, a programmer employing
our approach is well advised to prefer case expressions or auxiliary functions
over complex let/where expressions when deconstructing non-deterministic ex-
pressions.

6.10 Debugging

Designing debugging tools for lazy functional programming languages is a com-
plex task which is often solved by expensive tracing of lazy computations. In
[Braßel et al., 2007] we have presented an approach in which the information
collected as a trace is reduced considerably (kilobytes instead of megabytes).
The basic idea, which we will present in this section, is to collect a kind of step
information for a call-by-value interpreter, which can then efficiently reconstruct
the computation for debugging/viewing tools, like declarative debugging. In the
original paper we have shown the correctness of the approach. That approach
covered purely functional programs only. With the development of the present
work, the results by Braßel et al. [2007] directly carry over to the setting of
functional logic programs.

6.10.1 Debugging Functional Programs with Oracle

The demand-driven nature of lazy evaluation is one of the most appealing fea-
tures of modern functional languages like Haskell [Peyton Jones, 2003]. Unfor-
tunately, it is also one of the most complex features one should face in order to

6.10. DEBUGGING 159

design a debugging tool for these languages. In particular, printing the step-by-
step trace of a lazy computation is generally useless from a programmer’s point
of view, mainly because arguments of function calls are often shown unevaluated
and because the order of evaluation is counterintuitive.

There are several approaches that improve this situation by hiding the de-
tails of lazy evaluation from the programmer. The main such approaches are:
Freja [Nilsson and Sparud, 1997a] and Buddha [Pope and Naish, 2003], which
are based on the declarative debugging technique from logic programming by
Shapiro [1983], Hat [Sparud and Runciman, 1997a], which enables the explo-
ration of a computation backwards starting at the program output or error
message, and Hood [Gill, 2001], which allows the programmer to observe the
data structures at given program points.

Many of these approaches are based on recording a tree or graph struc-
ture representing the whole computation, like the Evaluation Dependence Tree
(EDT) for declarative debugging or the redex trail in Hat. For finding bugs, this
recorded structure is represented in a user-friendly (usually innermost-style) way
to the programmer in a separate viewing phase. Unfortunately, this structure
dramatically grows for larger computations and can contain several mega-, even
gigabytes of information.

In our paper [Braßel et al., 2007], we have introduced an alternative approach
to debugging lazy functional programs. Instead of storing a complete redex
trail or EDT, we memorize only the information necessary to guide a call-by-
value interpreter to produce the same results. To avoid unnecessary reductions,
similarly to the lazy semantics, the call-by-value interpreter is controlled by a
list of step numbers determining which redexes should not be evaluated. If every
redex is evaluated even by a lazy strategy, the list of step numbers reduces to a
single number – the total number of reduction steps in the complete computation
– which demonstrates the compactness of our representation. Furthermore,
Braßel et al. [2007] give a proof of correctness for the approach, in contrast to
other existing approaches in which the compression of stored information is only
motivated as an implementation issue.

We illustrate our approach by a small example.

Example 6.10.1 Consider the following program.

from :: Int → [Int]

from n = n : from (n+1)

head :: [a] → a

head (x:_) = x

tail :: [a] → [a]

tail (_:xs) = xs

The lazy evaluation of the expression (head (tail (from 0))) in the context of
that program can be depicted as:

head (tail (from 0))

⇒ head (tail (0:from (0+1)))
⇒ head (from (0+1))
⇒ head (0+1:from ((0+1)+1) ⇒ 0+1 ⇒ 1

160 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

This evaluation can be described as: “Do three steps innermost then discard
the next two left-most innermost expressions and do two more eager steps.” In
short the information can be comprised to the list of eager steps [3,0,2]. For
each step in replaying the evaluation the first number is decreased and a leading
zero means a discard step. The example derivation can then be mapped to the
left-most innermost (eager) evaluation:

[3,0,2] head (tail (from 0))

⇒[2,0,2] head (tail (0:from (0+1)))
⇒[1,0,2] head (tail (0:from 1))

⇒[0,0,2] head (tail (0:1:from (1+1)))
⇒[0,2] head (tail (0:1:from _))

⇒[2] head (tail (0:1:_))

⇒[1] head (1:_)

⇒[0] 1

In our paper [Braßel et al., 2007] we have formalized a technique to auto-
matically record and replay such step information. Apart from showing the
soundness of the approach, we were able to prove interesting properties about
the magnitude of resources needed to compute the step information. Here and
in the following the step information is nicknamed an “oracle”.

The example demonstrates the compactness of our representation that usu-
ally only requires a fairly limited amount of memory (kilobytes instead of
megabytes). The step list is used in the subsequent tracing/debugging ses-
sion to control the call-by-value evaluation that replays the original evaluation
in a more comprehensible order. In a nutshell, we trade time for space in our
approach.

In a further work [Braßel and Siegel, 2008] we have shown how to implement
a debugging tool with the technique described above. The following example
describes the usage of the debugger.

Example 6.10.2 Consider the following simple (but erroneous) program (where
the concrete code for fib, which computes the corresponding Fibonacci number,
is omitted):

length [] = 0

length (_:xs) = length xs

exp = length (take 2 (fiblist 0))

fiblist x = fib x : fiblist (x+1)

fib :: Int → Int

fib _ = error "this will not be evaluated"

With the transformation described in the original paper [Braßel et al., 2007]
the program is transformed such that the step information is recorded via side
effects. Then a second transformation generates code which uses this step infor-
mation to run the program in a lazy call-by-value manner. Upon completion of
the second transformation, the actual debugging session starts. The debugging
tool described in [Braßel and Siegel, 2008] supports two modes. The first is an
implementation of the well-known declarative debugging method, also known as

6.10. DEBUGGING 161

algorithmic debugging [Shapiro, 1983]. The second is a step-by-step tracer al-
lowing to follow a program’s execution as if the underlying semantics was strict,
allowing to skip uninteresting sub computations. In addition, the tool gives some
support for finding bugs in programs employing I/O, which is not easily inte-
grated in related approaches.

____ ____ _____
(_ \ (_ _) (_) Believe
) _ < _)(_)(_)(in

(____/()(____)()(_____)() Oracles
--------type ? for help----------

exp

Initially, we only see a call to function exp which was the main expression in
our example. Pressing i turns on inspect mode. In inspect mode, the result of
every sub computation is directly shown and can be “inspected” by the user, i.e.,
rated as correct or wrong. Inspect mode therefore corresponds to the declarative
debugging method. The display of results of sub computations can be turned on
and off at any time, switching between declarative and step-wise debugging.

After pressing i, the debugger evaluates the expression and displays the re-
sult.

exp ~> 0

We expected main to have value 2, but the program returned value 0. Thus, we
enter w (wrong) in order to tell the debugger that the result was wrong. The
debugging tool stores this choice as explained in the paper [Braßel and Siegel,
2008]. As the value of exp depends on several function calls on the right-hand
side of its definition, the tool now displays the first of these calls in a leftmost
innermost order:

fiblist 0 ~> _ : (_ : _)

The line above shows that the expression fiblist 0 has been evaluated to a list
that has at least two elements. This might be correct, but we are not too sure,
since this result depends strongly on the evaluation context. A “don’t know” in
declarative debugging actually corresponds to the skipping of sub computations
in the step-by-step mode. We therefore press s (skip).

take 2 (_ : (_ : _)) ~> [_,_]

Actually, this looks quite good. By entering c (correct) we declare that this sub
computation meets our expectation. Now the following calculation is displayed:

length [_,_] ~> 0

The function length is supposed to count the elements in a list. Since the argu-
ment is a two-element list, the result should be 2, but it is actually 0. By pressing
w we therefore state that this calculation is erroneous. Now the debugger asks
for the first sub computation leading to this result:

length [_] ~> 0

162 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

This is also wrong, but for the sake of demonstration we delay our decision. By
pressing the space bar (step into) we move to the sub expressions of length [_].
We now get to the final question:

length [] ~> 0

The length of an empty list [] is zero, so by pressing c (correct) we state that
this evaluation step is correct. Now we have reached the end of the program
execution, but a bug has not been isolated yet. We have narrowed down the error
to the function call length [_,_], but still there are unrated sub computations
which might have contributed to the erroneous result. The tool asks if the user
wants to restart the debugging session re-using previously given ratings:

end reached. press ’q’ to abort or any other key to restart.

After pressing <SPACE>, the debugger restarts and asks for the remaining func-
tion calls. There is only one unrated call left within the erroneous sub compu-
tation:

length [_] ~> 0

Now we provide the rating we previously skipped. After entering w (wrong) it is
evident which definition contains the error:

found bug in rule:
lhs = length [_]
rhs = 0

A further interesting advantage of our approach to reexecute the program
with a strict evaluation strategy is the possibility to include “virtual I/O”. Dur-
ing the execution of the original program, all externally defined I/O-actions with
non-trivial results, i.e., other than IO (), are stored in a special file. These values
are retrieved during the debugging session. In addition, selected externally de-
fined I/O-actions, e.g., getChar, are provided with a “virtual implementation”.
To show what this means, we demonstrate how the main action of the following
program is treated by our debugging tool.

getLine :: IO String

getLine = getChar >>= testEOL

testEOL :: Char → IO String

testEOL c = if isNewLine c then return []

else getLine >>= λ cs → return (c:cs)

main = getLine >>= writeFile "userInput"

As described above the program is executed to obtain the oracle in a file. As
this program additionally contains user interaction, we have to enter a line
during execution. We type, for example, “abc”. Meanwhile, along with the
file containing the oracle, a second file is written that contains the sequence of
values for getChar and the number of bytes for their representation in the file:

3,’a’3,’b’3,’c’4,’\n’

6.10. DEBUGGING 163

There is no need to identify the different calls to external functions, since I/O-
actions will be executed in the strict version in exactly the same order as in the
original program. This is of course essential for correctness.

When using the debugging tool presented in [Braßel and Siegel, 2008] in step-
wise mode, a GUI called B.I.O.tope is started, which represents the virtual I/O
environment. In our example, B.I.O.tope is told that someone has typed an a

on the console, which is the “virtual I/O-action” we connected with getChar.
The corresponding B.I.O.tope window is shown in Figure 6.16. The result

Figure 6.16: The B.I.O.tope Virtual I/O Environment

of executing the writeFile action is shown in the B.I.O.tope as depicted in
Figure 6.17. There we can see that the GUI has switched to the file dialog.
It contains a list of files which have been read (R:) or written (W:) during the
debugging session and clicking a file in this list makes the file contents visible
as they are at the current point of the debugging session.

Figure 6.17: Files in the B.I.O.tope Virtual I/O Environment

Following the work by Braßel and Siegel [2008], we have supervised a master
thesis Siegel [2008] with the aim to bring the approach to Haskell (the original
work was done for the Curry compilation system KiCS [Braßel and Huch, 2009]).

6.10.2 Debugging Functional Logic Programs with Oracle

The original approach to debugging with oracle information [Braßel et al., 2007]
was devised for functional programs only. We have presented the approach
here because with the development of this work the extension for functional
logic languages comes (nearly) for free. As we have developed a technique to
translate functional logic programs to purely functional ones, the approach to
record step information [Braßel et al., 2007] directly carries over to correctly
record the information about the evaluation of the resulting programs.

164 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

Example 6.10.3 Reconsider the definition of insert from example 1.1.12.

insert x [] = [x]

insert x (y:ys) = x:y:ys ? y:insert x ys

The lazy evaluation of the expression head (insert 3 [1,2] 7) can be depicted
as follows, where 7 is an identifier arbitrarily chosen to be different from 1,2,3:

head (insert 3 [1,2] 7)

⇒ head (Choice_List 7 [3,1,2] (1:insert 3 [2] (leftID 7))

⇒ Choice_Int 7 (head [3,1,2]) (head (1:insert 3 [2] (leftID 7)))

⇒ Choice_Int 7 3 (head (1:insert 3 [2] (leftID 7)))

⇒ Choice_Int 7 3 1

In order to describe the innermost derivation with oracle, all we need to do
is describe the derivation of the purely functional program resulting from our
transformation. This means, we state that we do the first leftmost innermost
step because the corresponding redex (insert 3 [1,2] 7) was unfolded and in
the result, which is (Choice_List 7 [3,1,2] (1:insert 3 [2] (leftID 7)), the
next leftmost innermost redex, which is (leftID 7), is not evaluated as well
as the one after that (insert 3 [2] (leftID 7)). Then all remaining redexes
are unfolded. The resulting oracle is therefore [1,0,3] and we can replay the
derivation as:

[1,0,3] head (insert 3 [1,2] 7)

⇒[0,0,3] head (Choice_List 7 [3,1,2] (1:insert 3 [2] (leftID 7))

⇒[0,3] head (Choice_List 7 [3,1,2] (1:insert 3 [2] _)

⇒[3] head (Choice_List 7 [3,1,2] (1:_))

⇒[2] Choice_Int 7 (head [3,1,2]) (head (1:_))

⇒[1] Choice_Int 7 3 (head (1:_))

⇒[0] Choice_Int 7 3 1

Note that it is essential for correctness that our approach features sharing
across non-determinism, cf. Section 6.4. Otherwise, arbitrary parts of the step
file, which is written via side-effects, would be repeatedly recorded and the
resulting information would not be reliable.

As we have seen, the recording and interpretation of step files seamlessly
carries over from the original work [Braßel et al., 2007]. The only adaption of the
approach required to debug functional logic programs concerns the debugging
tools. These tools need to be extended by the ability to represent information
about non-determinism which is comprehensible for the user. Here we describe
how debugging tools were extended as developed by Braßel [2008].

The derivations with Choice constructors and identifiers as well as the more
technical details of the completed reductions are not suited for the programmer
who is looking for a bug in his Curry program. Therefore, several conventions
help to get a more simple view on derivations.

• Unfolding of generator functions is never seen (trusted functions).

• The references of Choice constructors are hidden. For example, a value
like (Choice 2 True False) is represented as (True ? False).

• Invalid parts of the search space due to the modelling of call-time choice
are always omitted, cf. Section 5.2.1.

6.10. DEBUGGING 165

• When a Choice node has only a single valid alternative, this alternative is
shown rather than any failures.

Accordingly, the following output is generated by a step by step examination
for permSort [2,1] in the debugging tool presented in Braßel [2008]:

permSort [2,1]

permute [2,1]

permute [1]

permute [] ⇒ []

insert 1 [] ⇒ [1]

permute [1] ⇒ [1]

insert 2 [1]

insert 2 [] ⇒ [2]

insert 2 [1] ⇒ [2,1] ? [1,2]

permute [2,1] ⇒ [2,1] ? [1,2]

sorted ([2,1] ? [1,2])

2 < 1 ⇒ False

1 < 2 ⇒ True

sorted [2]

sorted [2] ⇒ True

sorted ([2,1] ? [1,2]) ⇒ True

permSort [2,1] ⇒ [1,2]

In order to omit the representation of references in Choice constructors with-
out loosing semantically important information, we have adopted bubbling as
first presented in Antoy et al. [2006a]. Bubbling is related to the approach de-
veloped in this work in the sense that non-deterministic branching is treated
(almost) like a constructor. The Choice constructors of our approach are “lifted
up” one step at a time by the rules added by our transformation like:

head (Choice_List r x y) = choiceCons r (head x) (head y)

In bubbling, in contrast, when a (?) is at a needed position it is moved up in the
term structure until a “proper dominator” has been copied, i.e., a symbol which
is above all references to that (?). The exact definition of bubbling [Antoy et al.,
2006a, Definition 5] employs term graphs and the basic idea is quite intuitive.
In order to exemplify it, we will use the style of let-rewriting López-Fraguas
et al. [2007].

Example 6.10.4 (Bubbling) Consider the following evaluation:

let l=insert 1 [2] 7 in (head l,l)

... ⇒ let l=Choice_List 7 [1,2] [2,1] in (head l,l)

In the approach of this work the (inlined) end result of this derivation would be
(Choice_Int 7 1 2,Choice_List 7 [1,2] [2,1]). The identifier 7 is needed to
reconstruct the fact that both parts of the tuple share the same choice, i.e., that
(1,[2,1]) is not a valid projection of the result. In bubbling, in contrast, the
next step is to copy the whole let expression. (If there was an outer context of
this expression, that context would not be copied.) In the notions of Antoy et al.
[2006a], the tuple constructor is the dominator.

let l=insert 1 [2] in (head l,l)

...⇒ let l=[1,2] ? [2,1] in (head l,l)

⇒ let l=[1,2] in (head l,l) ? let l=[2,1] in (head l,l)

⇒ (1,[1,2]) ? (2,[2,1])

166 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

The advantage of this technique is that (?) is never duplicated and, thus, no
identifiers are needed. This is why we can use the technique to omit the refer-
ences when presenting values. In our tool, the derivation is presented as:

main

insert 1 [2]

insert 1 [] ⇒ [1]

insert 1 [2] ⇒ [1,2] ? [2,1]

head ([1,2] ? [2,1]) ⇒ 1 ? 2

main ⇒ (1,[1,2]) ? (2,[2,1])

The operation head is applied to the non-deterministic argument ([1,2] ? [2,1])

but the representation at the end is the result of a bubbling procedure in the
pretty printer.

6.10.3 Related Work for Debugging

We have already given a detailed accord of related work with regard to debugging
tools in Section 1.3.1. Here we would like to discuss the attempts to decrease
the memory requirements of related approaches. As already mentioned, many
of the approaches to debug lazy functional programs are based on recording
the computation in a redex trail (Sparud and Runciman [1997a]) or an EDT
(Nilsson and Sparud [1997a]). The size of these structures crucially grows with
the length of the computation to be debugged. As a solution to this problem,
some different approaches were proposed.

Sparud and Runciman [1997b] present one of the first approaches to reduce
the size of redex trails. It is based on not recording trusted computations (e.g.,
the evaluation of Prelude functions) and on pruning trails. Unfortunately, con-
sidering trusted functions does not reduce memory consumption as expected,
since trusted functions are applied to expressions for which debug information
has to be recorded, cf. Pope and Naish [2003]. Pruning trails was not considered
further since the resulting trail is incomplete and the buggy computation can
be cut from the recorded information.

In the further development of Hat [Wallace et al., 2001], the problem of
recording large redex trails was not really tackled. All information is written to
a large file which results in a slowdown when generating this file and analyzing
it in viewer components.

The piecemeal tracing approach of Nilsson [1999, 2001] and Pope and Naish
[2003] was defined for declarative debugging by means of an Evaluation Depen-
dence Tree (EDT) used in Freja [Nilsson and Sparud, 1997a] or Buddha Pope
[2005]. In this approach, only a piece of the entire EDT is initially generated,
and new pieces are computed only if they are needed by re-executing the entire
program. Hence, the saving of space is purchased by additional run-time during
debugging. In contrast, our approach is directly space efficient and only stores a
minimal amount of information at execution time. Furthermore, their approach
is basically oriented to declarative debugging in contrast to our step lists.

Pope and Naish [2003] propose an optimization of the piecemeal EDT con-
struction in which it is not necessary to restart the whole computation to com-
pute new pieces of the EDT. Instead computations are stored which allow the
generation of the missing parts of the EDT. However, there exists no evaluation
on how much memory is needed for storing these computations. Furthermore,

6.10. DEBUGGING 167

the implementation highly depends on the internal structure of the Glasgow
Haskell Compiler (ghc) and the underlying C heap in which structures are stored
to prevent them from garbage collection. This makes it non-portable to other
Haskell systems. The whole approach is motivated from the implementation
perspective, without any correctness proofs.

Finally, we would like to mention that a practical course was held at the
Christian-Albrechts-University of Kiel to implement a framework with which
new debugging tools based on the presented work can be easily implemented.
Some results of this course were published by Wulf [2009].

168 CHAPTER 6. ADVANCED TOPICS AND BENCHMARKS

Chapter 7

Conclusion

In this work we have presented an approach to translate lazy functional logic
programs to purely functional ones. The translation fully preserves the laziness
of the original declarations and makes use of the sharing provided by the target
language. We have given a proof of soundness for the core concepts and we have
demonstrated the practical relevance of the approach.

More concretely, we have connected to previous work in the field of functional
logic programming by basing our work on an operational semantics proposed
by Albert et al. [2005]. We have shown that this semantics suffers from an
anomaly with regard to the evaluation of certain expressions. We have proposed
a fix for this problem, extensively justifying our modification in Chapter 2 and
Section 6.5.

After that, we have transferred a recent result about the relation of free vari-
ables with so called “generators” to the resulting operational semantics. With
our transfer this theorem was obtained for the first time for a setting in which
the important property of sharing is modeled on the formal level (Chapter 3).

In Chapter 4 we have shown that the calculus to model functional logic
programs can be simplified further. The resulting formalism features several
advantages. Firstly, the calculus has less and simpler rules, featuring less purely
technical details. Secondly, the programs interpreted by the calculus are, at
least in our opinion, more readable. Last but not least, we have argued that
the relation to another important approach to model the operational semantics
of functional logic programs, namely term-graph rewriting, is now considerably
closer.

The main theoretic result of our work is contained in Chapter 5. There, we
have motivated and formalized our approach to eliminate the non-determinism
inherent to functional logic programs by a simple program transformation. The
basic ideas are a) to compute on a treelike representation of the logic search
space and b) to associate dependent choices by labeling them with identifiers.

Chapter 6 is dedicated to the demonstration of the practical relevance of
our approach. Several benchmarks for various functional logic programs wit-
ness that the programs resulting from our transformation can be compiled to
machine code that is more efficient than that generated by existing compilation
systems. Especially, we have given account that the simplicity of our trans-
formation enables a better optimization of the target language’s compiler than
comparable approaches. Furthermore, we have presented how several features

169

170 CHAPTER 7. CONCLUSION

of functional logic languages, like free variables, recursive let bindings, different
search strategies and constraints, can be implemented in our setting. In addi-
tion, we have implemented several features which go beyond the possibilities of
systems currently in use. One such feature is that the presented search strate-
gies include a parallel search. Another unique feature of our approach is the
sharing of deterministic results across the border of non-deterministic choice.
The latter feature is, as we have argued, not only advantageous for run-time
efficiency but also of key importance for a seamless integration of the functional
and logic paradigms in a unified language. Furthermore, the presented imple-
mentation of encapsulated search is the first to feature both strong and weak
encapsulation in a declarative way, i.e., independent of the order of evaluation.
For the integration of weak encapsulation we have shown how to support “set
functions” in our settings, which have recently been proposed as a syntactic
extension for functional logic languages. Finally, we have introduced a tech-
nique for debugging purely functional programming languages which we have
developed recently. The reason to discuss the approach in this work is that our
translation makes it possible to transfer it to the more general setting of func-
tional logic languages. As we have demonstrated, this transfer is only possible
because of the features uniquely present in our implementation, as it depends
on sharing across non-determinism.

Bibliography

E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics
for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

S. Antoy and B. Braßel. Computing with subspaces. In Proceedings of the
9th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’07), pages 121–130. ACM Press, 2007.

S. Antoy and M. Hanus. Functional logic design patterns. In Proc. of the
6th International Symposium on Functional and Logic Programming (FLOPS
2002), pages 67–87. Springer LNCS 2441, 2002.

S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

S. Antoy and M. Hanus. Overlapping rules and logic variables in functional
logic programs. In Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006), pages 87–101. Springer LNCS 4079, 2006.

S. Antoy and M. Hanus. Set functions for functional logic programming. In
Proceedings of the 11th ACM SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming (PPDP’09), pages 73–82. ACM
Press, 2009.

S. Antoy and S. Johnson. Teabag: A functional logic language debugger. In Proc.
13th International Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2004), pages 4–18, Aachen (Germany), 2004. Technical Report
AIB-2004-05, RWTH Aachen.

S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st
ACM Symposium on Principles of Programming Languages, pages 268–279,
Portland, 1994.

S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for func-
tional logic computations. In Proc. of the 16th International Workshop on
Implementation and Application of Functional Languages (IFL 2004), pages
108–125. Springer LNCS 3474, 2005.

171

172 BIBLIOGRAPHY

S. Antoy, D. Brown, and S.-H. Chiang. On the correctness of bubbling. In
F. Pfenning, editor, 17th International Conference on Rewriting Techniques
and Applications, pages 35–49, Seattle, WA, Aug. 2006a. Springer LNCS 4098.

S. Antoy, D.W. Brown, and S.-H. Chiang. Lazy context cloning for non-
deterministic graph rewriting. In Proc. of the 3rd International Workshop
on Term Graph Rewriting (Termgraph’06), pages 61–70, Vienna, Austria,
2006b.

J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Pro-
gramming in Erlang. Prentice Hall, 1996.

L. Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal
of Functional Programming, 4(1):117–123, 1994.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1984. Revised edition.

R. Berghammer. Ordnungen, Verbände und Relationen mit Anwendungen.
Vieweg+Teubner, 2008.

S. P. Booth and S. B. Jones. Walk backwards to happiness - debugging by time
travel. In Proceedings of the Third International Workshop on Automatic
Debugging (AADEBUG), pages 171–183, 1997.

B. Braßel. A framework for interpreting traces of functional logic computations.
Electronic Notes in Theoretical Computer Science, 177:91–106, 2007.

B. Braßel. A Technique to build Debugging Tools for Lazy Functional Logic Lan-
guages. In M. Falschi, editor, Proceedings of the 17th Workshop on Functional
and (Constraint) Logic Programming (WFLP 2008), pages 63–76, 2008.

B. Braßel and J. Christiansen. Denotation by transformation: Towards obtain-
ing a denotational semantics by transformation to point-free style. In A. King,
editor, Proceedings of the 17th International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2007), volume 4915 of LNCS,
pages 90–105. Springer, 2008.

B. Braßel and J. Christiansen. A relation algebraic semantics for a lazy func-
tional logic language. In R. Berghammer, B. Möller, and G. Struth, editors,
RelMiCS, volume 4988 of Lecture Notes in Computer Science, pages 37–53.
Springer, 2008.

B. Braßel and S. Fischer. From Functional Logic Programs to Purely Functional
Programs Preserving Laziness. In Proc. 20th Workshop on Implementation
and Application of Functional Languages (IFL 2008), pages 214–215, 2008.

B. Braßel and M. Hanus. Nondeterminism analysis of functional logic programs.
In Proceedings of the International Conference on Logic Programming (ICLP
2005), pages 265–279. Springer LNCS 3668, 2005.

B. Braßel and F. Huch. On a tighter integration of functional and logic program-
ming. In Proc. APLAS 2007, pages 122–138. Springer LNCS 4807, 2007a.

BIBLIOGRAPHY 173

B. Braßel and F. Huch. On a tighter integration of functional and logic pro-
gramming. In Zhong Shao, editor, APLAS, volume 4807 of Lecture Notes in
Computer Science, pages 122–138. Springer, 2007b.

B. Braßel and F. Huch. The Kiel Curry system KiCS. In D. Seipel, M. Hanus,
and A. Wolf, editors, Applications of Declarative Programming and Knowledge
Management, volume 5437 of Lecture Notes in Artificial Intelligence, pages
195–205. Springer, 2009.

B. Braßel and H. Siegel. Debugging Lazy Functional Programs by Asking the
Oracle. In O. Chitil, editor, Proc. Implementation of Functional Languages
(IFL 2007), volume 5083 of Lecture Notes in Computer Science, pages 183–
200. Springer, 2008.

B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic compu-
tations. In Proc. of the Sixth International Symposium on Practical Aspects
of Declarative Languages (PADL’04), pages 193–208. Springer LNCS 3057,
2004a.

B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming, 2004(6),
2004b.

B. Braßel, M. Hanus, F. Huch, and G. Vidal. A semantics for tracing declarative
multi-paradigm programs. In Proceedings of the 6th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming
(PPDP’04), pages 179–190. ACM Press, 2004c.

B. Braßel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-time profiling of
functional logic programs. In Proceedings of the International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR’04), pages
182–197. Springer LNCS 3573, 2005.

B. Braßel, S. Fischer, and F. Huch. A program transformation for tracing func-
tional logic computations. In Pre-Proceedings of the International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR’06), pages
141–157. Technical Report CS-2006-5, Università ca’ Foscari di Venezia, 2006.

B. Braßel, S. Fischer, M. Hanus, F. Huch, and G. Vidal. Lazy call-by-value
evaluation. In Proc. of the 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007), pages 265–276. ACM Press, 2007.

B. Braßel, S. Fischer, and F. Huch. Declaring numbers. Electronic Notes in
Theoretical Computer Science, 216:111–124, 2008.

B. Braßel, S. Fischer, M. Hanus, and F. Reck. Transforming functional logic
programs into monadic functional programs. In Proc. of the 19th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2010),
pages 2–18. Universidad Politécnica de Madrid, 2010.

R. Caballero and M. Rodŕıguez-Artalejo. DDT: a declarative debugging tool for
functional-logic languages. In Proceedings of the 7th International Symposium
on Functional and Logic Programming (FLOPS 2004), pages 70–84. Springer
LNCS 2998, 2004.

174 BIBLIOGRAPHY

M. Cameron, M. Garćıa de la Banda, K. Marriott, and P. Moulder. Vimer: A
visual debugger for Mercury. In Proceedings of the 8th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 56–66. ACM Press, 2003.

A. Casas, D. Cabeza, and M.V. Hermenegildo. A syntactic approach to combin-
ing functional notation, lazy evaluation, and higher-order in lp systems. In
Proc. of the 8th International Symposium on Functional and Logic Program-
ming (FLOPS 2006), pages 146–162. Springer LNCS 3945, 2006.

O. Chitil and F. Huch. Monadic, prompt lazy assertions in Haskell. In Proc.
APLAS 2007, pages 38–53. Springer LNCS 4807, 2007.

O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood – a compar-
ative evaluation of three systems for tracing and debugging lazy functional
programs. In Proc. of the 12th International Workshop on Implementation of
Functional Languages (IFL 2000), pages 176–193. Springer LNCS 2011, 2001.

A. Church. The Calculi of Lambda Conversion. Princeton University Press,
1941.

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing
of haskell programs. In International Conference on Functional Programming
(ICFP’00), pages 268–279. ACM Press, 2000.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of Lecture Notes in Computer Science, 2007. Springer.

O. Danvy and L. R. Nielsen. Defunctionalization at work. In PPDP ’01: Pro-
ceedings of the 3rd ACM SIGPLAN international conference on Principles
and practice of declarative programming, pages 162–174, New York, NY, USA,
2001. ACM.

J. Dios and F.J. López-Fraguas. Elimination of extra variables from functional
logic programs. In P. Lucio and F. Orejas, editors, VI Jornadas sobre Pro-
gramación y Lenguajes (PROLE 2006), pages 121–135. CINME, 2006.

R. Kent Dybvig. The Scheme Programming Language. MIT Press, third edition,
2002.

R. Echahed. Inductively sequential term-graph rewrite systems. In H. Ehrig,
R. Heckel, G. Rozenberg, and G. Taentzer, editors, ICGT, volume 5214 of
Lecture Notes in Computer Science, pages 84–98. Springer, 2008.

R. Ennals and S. Peyton Jones. Hsdebug : Debugging lazy programs by not
being lazy, 2003.

L. Erkök. Value recursion in monadic computations. Technical report, OGI
School of Science and Engineering, OHSU, 2002.

S. Fischer and H. Kuchen. Data-flow testing of declarative programs. In Proc. of
the 13th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2008), pages 201–212. ACM Press, 2008.

BIBLIOGRAPHY 175

S. Fischer, O. Kiselyov, and C. Shan. Purely functional lazy non-deterministic
programming. In Proceeding of the 14th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2009), pages 11–22. ACM, 2009.

M.J. Garćıa de la Banda, B. Demoen, K. Marriott, and P.J. Stuckey. To the
gates of HAL: A HAL tutorial. In Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002), pages 47–66. Springer
LNCS 2441, 2002.

A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic
Notes in Theoretical Computer Science, 41(1), 2001.

J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Ro-
dŕıguez-Artale jo. An approach to declarative programming based on a rewrit-
ing logic. Journal of Logic Programming, 40:47–87, 1999a.

J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47–87, 1999b.

M. Hanus. Reporting failures in functional logic programs. Electronic Notes in
Theoretical Computer Science, 177:59–73, 2007a.

M. Hanus. Multi-paradigm declarative languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pages 45–75. Springer
LNCS 4670, 2007b.

M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees.
Journal of Functional Programming, 9(1):33–75, 1999.

M. Hanus and P. Réty. Demand-driven search in functional logic programs.
Research report rr-lifo-98-08, Univ. Orléans, 1998.

M. Hanus and R. Sadre. A concurrent implementation of Curry in J

O. Kiselyov. Simple fair and terminating backtracking monad transformer.
http://okmij.org/ftp/Computation/monads.html#fair-bt-stream, Oc-
tober 2005.

P. Koopman, R. Plasmeijer, M. van Eekelen, and S. Smetsers. Functional pro-
gramming in clean. http://www.cs.ru.nl/~clean/contents/Clean_Book/
clean_book.html, 2001.

J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th ACM
Symposium on Principles of Programming Languages (POPL’93), pages 144–
154. ACM Press, 1993.

F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declara-
tive system. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

F. J. López-Fraguas and J. Sánchez-Hernández. Narrowing failure in functional
logic programming. In Zhenjiang Hu and M. Rodŕıguez-Artalejo, editors,
FLOPS, volume 2441 of Lecture Notes in Computer Science, pages 212–227.
Springer, 2002.

176 BIBLIOGRAPHY

F.J. López-Fraguas and J. Sánchez-Hernández. Proving failure in functional
logic programs. In Proc. First International Conference on Computational
Logic (CL 2000), pages 179–183. Springer LNAI 1861, 2000.

F.J. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to
failure in functional logic programming. Theory and Practice of Logic Pro-
gramming, 4(1):41–74, 2004.

F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A simple
rewrite notion for call-time choice semantics. In Proceedings of the 9th ACM
SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’07), pages 197–208. ACM Press, 2007.

B. Lorenz. Ein Debugger für Oz. Master’s thesis, Fachbereich Informatik,
Universität des Saarlandes, April 1999.

W. Lux. Comparing copying and trailing implementations for encapsulated
search. In Proc. 13th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2004), pages 91–103, Aachen (Germany), 2004.
Technical Report AIB-2004-05, RWTH Aachen.

W. Lux. Implementing encapsulated search for a lazy functional logic language.
In Proc. 4th Fuji International Symposium on Functional and Logic Program-
ming (FLOPS’99), pages 100–113. Springer LNCS 1722, 1999.

W. Lux and H. Kuchen. An efficient abstract machine for Curry. In
K. Beiersdörfer, G. Engels, and W. Schäfer, editors, Informatik ’99 — An-
nual meeting of the German Computer Science Society (GI), pages 390–399.
Springer, 1999.

J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. J.
Funct. Program., 8(3):275–317, 1998.

J. McCarthy. History of LISP. In R. L. Wexelblat, editor, History of Pro-
gramming Languages: Proceedings of the ACM SIGPLAN Conference, pages
173–197. Academic Press, June 1–3 1978.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

M. Naylor, E. Axelsson, and C. Runciman. A functional-logic library for wired.
In Haskell ’07: Proceedings of the ACM SIGPLAN workshop on Haskell work-
shop, pages 37–48, New York, NY, USA, 2007. ACM.

H. Nilsson. Tracing piece by piece: affordable debugging for lazy functional
languages. In Proceedings of the 1999 ACM SIGPLAN international con-
ference on Functional programming, pages 36–47, Paris, France, September
1999. ACM Press.

H. Nilsson. How to look busy while being as lazy as ever: The implementation
of a lazy functional debugger. Journal of Functional Programming, 11(6):
629–671, November 2001.

H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(3):337–370, 1994.

BIBLIOGRAPHY 177

H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a Basis for
Lazy Functional Debugging. Automated Software Engineering, 4(2):121–150,
1997a.

H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a Basis for
Lazy Functional Debugging. Automated Software Engineering, 4(2):121–150,
1997b.

W. Partain. The nofib benchmark suite of haskell programs. In J. Launchbury
and P. M. Sansom, editors, Functional Programming, Workshops in Comput-
ing, pages 195–202. Springer, 1992.
ava. In Proc. ILPS’97 Workshop on Parallelism and Implementation Tech-
nology for (Constraint) Logic Programming Languages, Port Jefferson (New
York), 1997.

M. Hanus and F. Steiner. Controlling search in declarative programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pages 374–390. Springer LNCS 1490, 1998.

M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2010.

M. Hanus (ed). Curry: An integrated functional logic language (vers. 0.8.2).
Available at http://www.curry-language.org, 2006.

R. Hinze. Deriving backtracking monad transformers. In P. Wadler, editor, Pro-
ceedings of the 2000 International Conference on Functional Programming,
Montreal, Canada, September 18-20, 2000, pages 186–197, sep 2000.

P. Hofstedt and A. Wolf. Einführung in die Constraint-Programmierung.
Springer, 2007.

F. Huch and P. H. Sadeghi. The interactive Curry observation debugger
COOiSY. In Proceedings of the 15th Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2006). ENTCS, 2006.

H. Hußmann. Nondeterministic Algebraic Specifications and Algebraic Pro-
grams. Birkhäuser Verlag, 1993.

T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In
Functional Programming Languages and Computer Architecture, pages 190–
203. Springer LNCS 201, 1985.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-
based type inference for gadts. In ICFP ’06: Proceedings of the eleventh ACM
SIGPLAN international conference on Functional programming, pages 50–61.
ACM, 2006.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type
inference for arbitrary-rank types. J. Funct. Program., 17(1):1–82, 2007.

S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Re-
port. Cambridge University Press, 2003.

178 BIBLIOGRAPHY

S.L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall, 1987.

B. C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002.

B. Pope. Declarative Debugging with Buddha. In V. Vene and T. Uustalu,
editors, Advanced Functional Programming, 5th International School, AFP
2004, volume 3622 of Lecture Notes in Computer Science, pages 273–308.
Springer Verlag, September 2005. ISBN 3-540-28540-7.

B. Pope and L. Naish. Practical aspects of declarative debugging in Haskell-98.
In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 230–240, 2003.

F. Pottier and N. Gauthier. Polymorphic typed defunctionalization. In N. D.
Jones and X. Leroy, editors, POPL, pages 89–98. ACM, 2004.

J. C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Reprinted from the proceedings of the 25th ACM National Confer-
ence, pages 717–740. ACM, 1972.

C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck:
Automatic exhaustive testing for small values. In Haskell ’08: Proceedings of
the first ACM SIGPLAN symposium on Haskell, pages 37–48. ACM, 2008.

J. Sánchez-Hernández. Constructive failure in functional-logic programming:
From theory to implementation. Journal of Universal Computer Science, 12
(11):1574–1593, 2006.

P.M. Sansom and S.L. Peyton Jones. Formally based profiling for higher-order
functional languages. ACM Transactions on Programming Languages and
Systems, 19(2):334–385, 1997.

M. Schmidt-Schauß, E. Machkasova, and D. Sabel. Counterexamples to sim-
ulation in non-deterministic call-by-need lambda-calculi with letrec. Frank
report 38, Institut für Informatik. Fachbereich Informatik und Mathematik.
J. W. Goethe- Universität Frankfurt am Main, August 2009.

M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische
Annalen, 92:305–316, 1924.

P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Program-
ming, 7(3):231–264, 1997.

E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, Mas-
sachusetts, 1983.

H. Siegel. Debugging non-strict programs by strict evaluation. Diplomarbeit, In-
stitut für Informatik, Christian-Albrechts-Universität zu Kiel, October 2008.

J. Silva. A comparative study of algorithmic debugging strategies. In G. Puebla,
editor, LOPSTR, volume 4407 of Lecture Notes in Computer Science, pages
143–159. Springer, 2006.

BIBLIOGRAPHY 179

J.R. Slagle. Automated theorem-proving for theories with simplifiers, commu-
tativity, and associativity. Journal of the ACM, 21(4):622–642, 1974.

G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pages 324–343. Springer
LNCS 1000, 1995a.

Z. Somogyi and F. Henderson. The design and implementation of mercury.
Slides of a tutorial at JICSLP’96, 1996.

J. Sparud. Fixing some space leaks without a garbage collector. In Proceed-
ings of the conference on Functional programming languages and computer
architecture, FPCA ’93, pages 117–122, New York, NY, USA, 1993. ACM.

J. Sparud and C. Runciman. Tracing Lazy Functional Computations Using
Redex Trails. In Proc. of the 9th Int’l Symp. on Programming Languages,
Implementations, Logics and Programs (PLILP’97), pages 291–308. Springer
LNCS 1292, 1997a.

J. Sparud and C. Runciman. Complete and partial redex trails of functional
computations. In Selected papers from 9th Intl. Workshop on the Implementa-
tion of Functional Languages (IFL’97, pages 160–177. Springer LNCS, 1997b.

J. Sparud and C. Runciman. Tracing Lazy Functional Computations Using
Redex Trails. In Proc. of the 9th Int’l Symp. on Programming Languages,
Implementations, Logics and Programs (PLILP’97), pages 291–308. Springer
LNCS 1292, 1997c.

P. Wadler. Fixing some space leaks with a garbage collector. Softw. Pract.
Exper., 17:595–608, September 1987.

P. Wadler. How to replace failure by a list of successes. In Functional Pro-
gramming and Computer Architecture, pages 113–128. Springer LNCS 201,
1985.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proc. POPL’89, pages 60–76, 1989.

M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-View Tracing for
Haskell: a New Hat. In Proc. of the 2001 ACM SIGPLAN Haskell Workshop.
Universiteit Utrecht UU-CS-2001-23, 2001.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science. North-Holland, 1990.

C. Wulf. Code-Erzeugung zur Unterstützung der Fehlersuche. Bachelorarbeit,
Institut für Informatik, Christian-Albrechts-Universität zu Kiel, april 2009.

